Using machine learning algorithms to determine the emotional maladjustment of a person by his rhythmogram
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 394-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this study is to explore the feasibility of identifying emotional maladjustment using machine learning algorithms. Methods. Electrocardiogram data were gathered using an event-telemetry approach, employing a software and hardware setup comprising a compact wireless ECG sensor (HxM; Zephyr Technology, USA) and a smartphone equipped with specialized software.For constructing the classifier, the following algorithms were employed: logistic regression, easy ensemble, and gradient boosting. The performance of these algorithms was assessed using the f1 metric. Results. It is demonstrated that employing dynamic spectra of the original signals enhances the classification accuracy of the model compared to using the original rhythmograms. Conclusion. A method is proposed for automatically determining the level of emotional maladaptation based on an individual's cardiorhythmogram. Information from a portable heart sensor, worn by an individual, is transmitted via Bluetooth to a mobile device. Here, the level of emotional maladaptation is assessed through a pre-trained neural network algorithm. When considering a neural network algorithm, it is recommended to employ a classifier trained on spectrograms.
Keywords: machine-learning algorithms, electcardiogram, emotional disadaptation, data analysis
@article{IVP_2024_32_3_a7,
     author = {S. V. Stasenko and O. V. Shemagina and E. V. Eremin and V. G. Jahno and S. B. Parin and S. A. Polevaya},
     title = {Using machine learning algorithms to determine the emotional maladjustment of a person by his rhythmogram},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {394--404},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a7/}
}
TY  - JOUR
AU  - S. V. Stasenko
AU  - O. V. Shemagina
AU  - E. V. Eremin
AU  - V. G. Jahno
AU  - S. B. Parin
AU  - S. A. Polevaya
TI  - Using machine learning algorithms to determine the emotional maladjustment of a person by his rhythmogram
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 394
EP  - 404
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a7/
LA  - en
ID  - IVP_2024_32_3_a7
ER  - 
%0 Journal Article
%A S. V. Stasenko
%A O. V. Shemagina
%A E. V. Eremin
%A V. G. Jahno
%A S. B. Parin
%A S. A. Polevaya
%T Using machine learning algorithms to determine the emotional maladjustment of a person by his rhythmogram
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 394-404
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a7/
%G en
%F IVP_2024_32_3_a7
S. V. Stasenko; O. V. Shemagina; E. V. Eremin; V. G. Jahno; S. B. Parin; S. A. Polevaya. Using machine learning algorithms to determine the emotional maladjustment of a person by his rhythmogram. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 394-404. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a7/

[1] Miskowiak K. W., Johnsen S., Sattler S. M., Nielsen S., Kunalan K., Rungby J., Lapperre T., Porsberg C. M., “Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables”, European Neuropsychopharmacology, 46 (2021), 39–48 | DOI

[2] Baig A. M., “Chronic COVID syndrome: Need for an appropriate medical terminology for long-COVID and COVID long-haulers”, J. Med. Virol, 93:5 (2021), 2555–2556 | DOI

[3] Yelin D., Wirtheim E., Vetter P., Kalil A. C., Bruchfeld J., Runold M., Guaraldi G., Mussini C., Gudiol C., Pujol M., Bandera A., Scudeller L., Paul M., Kaiser L., Leibovici L., “Long-term consequences of COVID-19: research needs”, The Lancet Infectious Diseases, 20:10 (2020), 1115–1117 | DOI

[4] Chen C., Haupert S. R., Zimmermann L., Shi X., Fritsche L. G., Mukherjee B., “Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long COVID: A meta-analysis and systematic review”, The Journal of Infectious Diseases, 226:9 (2022), 1593–1607 | DOI

[5] Alkodaymi M. S., Omrani O. A., Fawzy N. A., Shaar B. A., Almamlouk R., Riaz M., Obeidat M., Obeidat Y., Gerberi D., Taha R. M., Kashour Z., Kashour T., Berbari E. F., Alkattan K., Tleyjeh I. M., “Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis”, Clinical Microbiology and Infection, 28:5 (2022), 657–666 | DOI

[6] Stasenko S. V., Kazantsev V. B., “Covid olfactory dysfunction model”, 2023 Fifth International Conference Neurotechnologies and Neurointerfaces (CNN), IEEE, 2023, 82–85 | DOI

[7] Stasenko S. V., “Mean-field model of tripartite synapse with infected glial cells”, 2023 Fifth International Conference Neurotechnologies and Neurointerfaces (CNN), IEEE, 2023, 78–81 | DOI

[8] Song M., “Psychological stress responses to COVID-19 and adaptive strategies in China”, World Development, 136:105107 (2020) | DOI

[9] Stasenko S. V., Hramov A. E., Kazantsev V. B., “Loss of neuron network coherence induced by virus-infected astrocytes: a model study”, Scientific Reports, 13:1 (2023), 6401 | DOI | MR

[10] Stasenko S. V., Kovalchuk A. V., Eremin E. V., Drugova O. V., Zarechnova N. V., Tsirkova M. M., Permyakov S. A., Parin S. B., Polevaya S. A., “Using machine learning algorithms to determine the post-COVID state of a person by their rhythmogram”, Sensors, 23:11 (2023), 5272 | DOI

[11] Aleksandrovsky Y. A., Borderline Mental Races Construction, (in Russian), Medicina, Moscow, 2000, 496 pp.

[12] Parfenov V. A., Yakhno N. N., (in Russian), MIA, Moscow, 2000, 209 pp.

[13] Wise T. N., Mann L. S., Shay L., “Alexithymia and the five-factor model of personality”, Comprehensive Psychiatry, 33:3 (1992), 147–151 | DOI

[14] Runova E. V., Grigoreva V. N., Bakhchina A. V., Parin S. B., Shishalov I. S., Kozhevnikov V. V., Nekrasova M. M., Karatushina D. I., Grigoreva K. A., Polevaya S. A., “Vegetative correlates of conscious representation of emotional stress”, Modern Technologies in Medicine, 5 (2013), 69–76

[15] Grigorieva V. N., Tkhostov A. S., A method for assessing emotional new human condition, Patent No. 2291720.2007 Russian Federation, IPC A61M21/00: appl. 08.09.2005: publ. 20.01.2007. Assignee: Nizhny Novgorod State Medical Academy of the Federal Agency for Health and Social Development, in Russian, 23 pp.

[16] Hosmer D. W., Lemeshow S., Applied Logistic Regression, 2, Wiley, New York, Chichester, 2002, 392 pp. | DOI | MR

[17] Liu X.-Y., Wu J., Zhou Z.-H., “Exploratory undersampling for class-imbalance learning”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39:2 (2009), 539–550 | DOI | MR

[18] Hastie T., Tibshirani R., Friedman J., “Boosting and additive trees”, The Elements of Statistical Learning, Springer Series in Statistics, Springer, New York, 2009, 337–387 | DOI | MR

[19] Schapire R. E., “Explaining AdaBoost”, Empirical Inference, eds. Schölkopf B, Luo Z, Vovk V, Springer, Berlin, Heidelberg, 2013, 37–52 | DOI | MR | Zbl

[20] Kramer O., “Scikit-learn”, Machine Learning for Evolution Strategies, Studies in Big Data, 20, Springer, Cham, 2016, 45–53 | DOI | MR

[21] Lemaître G., Nogueira F., Aridas C. K., “Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning”, The Journal of Machine Learning Research, 18:1 (2017), 1–5 | MR