Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_3_a6, author = {D. S. Glyzin and S. D. Glyzin and A. Yu. Kolesov}, title = {A new approach to mathematical modeling of chemical synapses}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {376--393}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a6/} }
TY - JOUR AU - D. S. Glyzin AU - S. D. Glyzin AU - A. Yu. Kolesov TI - A new approach to mathematical modeling of chemical synapses JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 376 EP - 393 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a6/ LA - ru ID - IVP_2024_32_3_a6 ER -
D. S. Glyzin; S. D. Glyzin; A. Yu. Kolesov. A new approach to mathematical modeling of chemical synapses. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 376-393. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a6/
[1] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, Journal of Physiology, 117 (1952), 500–544 | DOI
[2] Izhikevich E. M., “Dinamicheskie sistemy v neironauke”, Geometriya vozbudimosti i pachechnoi aktivnosti, Izhevskii in-t kompyuternykh issledovanii, M., Izhevsk, 2018, 520 pp. | MR
[3] Proc. Steklov Inst. Math., 199 (1995), 1–126 | MR | Zbl
[4] Maiorov V. V., Myshkin I. Yu., “Matematicheskoe modelirovanie neironnoi seti na osnove uravnenii s zapazdyvaniem”, Matem. modelirovanie, 2:11 (1990), 64–76 | MR | Zbl
[5] Hutchinson G. E., “Circular causal systems in ecology”, Ann. N. Y. Acad. of Sci., 50:4 (1948), 221–246 | DOI
[6] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3 (2015), 3–76 | DOI | MR | Zbl
[7] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. matem. i matem. fiz, 50:12 (2010), 2099–2112 | MR | Zbl
[8] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Ob odnom sposobe matematicheskogo modelirovaniya khimicheskikh sinapsov”, Differents. uravneniya, 49:10 (2013), 1227–1244 | DOI | MR | Zbl
[9] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern, 68 (1993), 393–407 | DOI
[10] Kopell N., Somers D., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | DOI | MR | Zbl
[11] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975, 248 pp.
[12] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical J., 1 (1961), 445–466 | DOI
[13] Terman D., Borisyuk A., Friedman A., Ermentrout B., “An Introduction to Dynamical Systems and Neuronal Dynamics”, Tutorials in Mathematical Biosciences I, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 2005, 21–68 | DOI | MR
[14] Glyzin S. D., Kolesov A. Yu., “Ob odnom sposobe matematicheskogo modelirovaniya elektricheskikh sinapsov”, Differents. uravneniya, 58:7 (2022), 867–881 | DOI | Zbl
[15] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Dinamicheskie sistemy i smezhnye voprosy: K 60-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 216, 1997, 126–153 | Zbl
[16] Glyzin S. D., Kolesov A. Yu., “Beguschie volny v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, Zh. vychisl. matem. i matem. fiz, 62:1 (2022), 71–89 | DOI | Zbl
[17] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v koltsevykh gennykh setyakh”, TMF, 187:3 (2016), 560–579 | DOI | MR | Zbl
[18] Brown P. N., Byrne G. D., and Hindmarsh A. C., “VODE: A Variable Coefficient ODE Solver”, SIAM J. Sci. Stat. Comput, 10:5 (1989), 1038–1051 | DOI | MR | Zbl
[19] Glyzin S. D., Kolesov A. Yu., “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, TMF, 212:2 (2022), 213–233 | DOI | MR | Zbl