A new approach to mathematical modeling of chemical synapses
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 376-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to study a new mathematical model of a ring neural network with unidirectional chemical connections, which is a singularly perturbed system of differential-difference equations with delay. Methods. A combination of analytical and numerical methods is used to study the existence and stability of special periodic solutions in this system, the so-called traveling waves. Results. The proposed methods make it possible to show that the ring system under study allows the number of stable traveling waves to increase with the number of oscillators in the network. Conclusion. In this article, we rethink and refine the previously proposed method of mathematical modeling of chemical synapses. On the one hand, it was possible to fully take into account the requirement of the Volterra structure of the corresponding equations and, on the other hand, the hypothesis of saturating conductivity. This makes it possible to observe the principle of uniformity: the new mathematical model is based on the same principles as the previously proposed model of electrical synapses.
Keywords: circular neural network, chemical synapses, relaxation cycles, asymptotics, stability
@article{IVP_2024_32_3_a6,
     author = {D. S. Glyzin and S. D. Glyzin and A. Yu. Kolesov},
     title = {A new approach to mathematical modeling of chemical synapses},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {376--393},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a6/}
}
TY  - JOUR
AU  - D. S. Glyzin
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - A new approach to mathematical modeling of chemical synapses
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 376
EP  - 393
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a6/
LA  - ru
ID  - IVP_2024_32_3_a6
ER  - 
%0 Journal Article
%A D. S. Glyzin
%A S. D. Glyzin
%A A. Yu. Kolesov
%T A new approach to mathematical modeling of chemical synapses
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 376-393
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a6/
%G ru
%F IVP_2024_32_3_a6
D. S. Glyzin; S. D. Glyzin; A. Yu. Kolesov. A new approach to mathematical modeling of chemical synapses. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 376-393. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a6/

[1] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, Journal of Physiology, 117 (1952), 500–544 | DOI

[2] Izhikevich E. M., “Dinamicheskie sistemy v neironauke”, Geometriya vozbudimosti i pachechnoi aktivnosti, Izhevskii in-t kompyuternykh issledovanii, M., Izhevsk, 2018, 520 pp. | MR

[3] Proc. Steklov Inst. Math., 199 (1995), 1–126 | MR | Zbl

[4] Maiorov V. V., Myshkin I. Yu., “Matematicheskoe modelirovanie neironnoi seti na osnove uravnenii s zapazdyvaniem”, Matem. modelirovanie, 2:11 (1990), 64–76 | MR | Zbl

[5] Hutchinson G. E., “Circular causal systems in ecology”, Ann. N. Y. Acad. of Sci., 50:4 (1948), 221–246 | DOI

[6] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3 (2015), 3–76 | DOI | MR | Zbl

[7] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. matem. i matem. fiz, 50:12 (2010), 2099–2112 | MR | Zbl

[8] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Ob odnom sposobe matematicheskogo modelirovaniya khimicheskikh sinapsov”, Differents. uravneniya, 49:10 (2013), 1227–1244 | DOI | MR | Zbl

[9] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern, 68 (1993), 393–407 | DOI

[10] Kopell N., Somers D., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | DOI | MR | Zbl

[11] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975, 248 pp.

[12] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical J., 1 (1961), 445–466 | DOI

[13] Terman D., Borisyuk A., Friedman A., Ermentrout B., “An Introduction to Dynamical Systems and Neuronal Dynamics”, Tutorials in Mathematical Biosciences I, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 2005, 21–68 | DOI | MR

[14] Glyzin S. D., Kolesov A. Yu., “Ob odnom sposobe matematicheskogo modelirovaniya elektricheskikh sinapsov”, Differents. uravneniya, 58:7 (2022), 867–881 | DOI | Zbl

[15] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Dinamicheskie sistemy i smezhnye voprosy: K 60-letiyu so dnya rozhdeniya akademika Dmitriya Viktorovicha Anosova, Tr. MIAN, 216, 1997, 126–153 | Zbl

[16] Glyzin S. D., Kolesov A. Yu., “Beguschie volny v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, Zh. vychisl. matem. i matem. fiz, 62:1 (2022), 71–89 | DOI | Zbl

[17] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v koltsevykh gennykh setyakh”, TMF, 187:3 (2016), 560–579 | DOI | MR | Zbl

[18] Brown P. N., Byrne G. D., and Hindmarsh A. C., “VODE: A Variable Coefficient ODE Solver”, SIAM J. Sci. Stat. Comput, 10:5 (1989), 1038–1051 | DOI | MR | Zbl

[19] Glyzin S. D., Kolesov A. Yu., “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, TMF, 212:2 (2022), 213–233 | DOI | MR | Zbl