Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 357-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study aims to consider an ensemble of hippocampal neurons coupled in a ring, which may be responsible for generation of the primary rhythm at limbic epilepsy. Methods. Model equations were solved numerically. To determine the areas of oscillatory and excitable regime existance for a single neuron, the bifurcation analysis for the leakadge conductivity parameter was performed. The coupling delays was not implemented directly, instead, inertia in the synapse was introduced. To determine the stability of generation some couplings were removed and parameter detunig was introduced. Results. In the single neuron model the bistability region was detected, in which a stable focus coexhists with a limit cycle. Two main synchronous regimes were detected. The first regime inherits frequency of individual oscillator, with a relatively small phase shift between oscillators in the ring. The frequency of the second regime depends on the number of neurons in the ring, with the phase shift between neighbor oscillators being equal to ratio of oscillation period and number of neurons. This second regime can occur both for the parameters corresponding to bistabler regime in the individual neuron and for the parameters at which the only existing attractor is stable focus. The second synchronous regime is preserved for parameter detuning of 2% from their absolute values. Conclusion. It was shown that in the mathematical model of the ring of hippocampal neurons, where all the main significant currents are taken into account for individual neurons, and their parameters can vary, there is an oscillatory mode, the frequency of which is determined by the length of the ring and synaptic conductivity, rather than by the parameters individual neuron. In this case, a small change in synaptic conductivity can lead to a sharp (2-7 times) change in the generation frequency.
Keywords: Hodgkin-Huxley model, neural networks, collective dynamics, hippocampus, pyramidal neuron, epilepsy
@article{IVP_2024_32_3_a5,
     author = {M. V. Kornilov and A. A. Kapustnikov and E. A. Sozonov and M. V. Sysoeva and I. V. Sysoev},
     title = {Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {357--375},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a5/}
}
TY  - JOUR
AU  - M. V. Kornilov
AU  - A. A. Kapustnikov
AU  - E. A. Sozonov
AU  - M. V. Sysoeva
AU  - I. V. Sysoev
TI  - Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 357
EP  - 375
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a5/
LA  - ru
ID  - IVP_2024_32_3_a5
ER  - 
%0 Journal Article
%A M. V. Kornilov
%A A. A. Kapustnikov
%A E. A. Sozonov
%A M. V. Sysoeva
%A I. V. Sysoev
%T Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 357-375
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a5/
%G ru
%F IVP_2024_32_3_a5
M. V. Kornilov; A. A. Kapustnikov; E. A. Sozonov; M. V. Sysoeva; I. V. Sysoev. Synchronization regimes in the ring of rodent hippocampal neurons at limbic epilepsy. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 357-375. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a5/

[1] Scheffer I. E., Berkovic S., Capovilla G., Connolly M. B., French J., Guilhoto L., Hirsch E., Jain S., Mathern G. W., Moshé S. L., Nordli D. R., Perucca E., Tomson T., Wiebe S., Zhang Y.-H., Zuberi S. M., “ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology”, Epilepsia, 58:4 (2017), 512–521 | DOI | MR

[2] Suffczynski P., Kalitzin S., Lopes Da Silva F. H., “Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network”, Neuroscience, 126:2 (2004), 467–484 | DOI

[3] Medvedeva T. M., Sysoeva M. V., Lüttjohann A., van Luijtelaar G., Sysoev I. V., “Dynamical mesoscale model of absence seizures in genetic models”, PLoS ONE, 15:9 (2020), e239125 | DOI

[4] Kapustnikov A. A., Sysoeva M. V., Sysoev I. V., “Transient dynamics in a class of mathematical models of epileptic seizures”, Communications in Nonlinear Science and Numerical Simulation, 109 (2022), 106284 | DOI | MR

[5] Taylor P. N., Wang Y., Goodfellow M., Dauwels J., Moeller F., Stephani U., Baier G., “A Computational study of stimulus driven epileptic seizure abatement”, PLoS ONE, 9:12 (2014), e114316 | DOI

[6] Bertram E. H., “The functional anatomy of spontaneous seizures in a rat model of chronic limbic epilepsy”, Epilepsia, 38:1 (1997), 95–105 | DOI

[7] Blumenfeld H., Varghese G. I., Purcaro M. J., Motelow J. E., Enev M., McNally K. A., Levin A. R., Hirsch L. J., Tikofsky R., Zubal I. G., Paige A. L., Spencer S. S., “Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures”, Brain, 132:4 (2009), 999–1012 | DOI

[8] Kornilov M. V., Sysoev I. V., “Mathematical model of a main rhythm in limbic seizures”, Mathematics, 11:5 (2023), 1233 | DOI

[9] Mysin I. E., Kitchigina V. F., Kazanovich Y. B., “Phase relations of theta oscillations in a computer model of the hippocampal CA1 field: Key role of Schaffer collaterals”, Neural Networks, 116 (2019), 119–138 | DOI

[10] Egorov N. M., Sysoeva M. V., Ponomarenko V. I., Kornilov M. V., Sysoev I. V., “Koltsevoi generator neiropodobnoi aktivnosti s perestraivaemoi chastotoi”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 31:1 (2023), 103-120 | DOI | MR

[11] Hodgkin A., Huxley A., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, The Journal of Physiology, 117:4 (1952), 500–544 | DOI

[12] Tateno K., Hayashi H., Ishizuka S., “Complexity of spatiotemporalactivity of a neural network model which depends on the degree ofsynchronization”, Neural Network, 11:6 (1998), 985–1003 | DOI

[13] Yoshida M., Hayashi H., “Emergence of sequence sensitivity in a hippocampal CA3–CA1 model”, Neural Networks, 20:6 (2007), 653–667 | DOI | Zbl

[14] Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., “SciPy 1.0: fundamental algorithms for scientific computing in Python”, Nature methods, 17:3 (2020), 261–272 | DOI

[15] Pikovskii A. S., Rozenblyum M. G., Kurts Yu., Sinkhronizatsiya. Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 493 pp.

[16] Senhadji L., Wendling F., “Epileptic transient detection: wavelets and time-frequency approaches”, Neurophysiologie Clinique/Clinical Neurophysiology, 32:3 (2002), 175–192 | DOI

[17] Sobayo T., Fine A. S., Gunnar E., Kazlauskas C., Nicholls D., Mogul D. J., “Synchrony Dynamics Across Brain Structures in Limbic Epilepsy Vary Between Initiation and Termination Phases of Seizures”, IEEE Transactions on Biomedical Engineering, 60:3 (2013), 821–829 | DOI

[18] Scorcioni R., Lazarewicz M. T., Ascoli G. A., “Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories”, Journal of Comparative Neurology, 473:2 (2004), 177–193 | DOI

[19] Wendling F., Bartolomei F., Bellanger J. J., Chauvel P., “Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition”, European Journal of Neuroscience, 15:9 (2002), 1499–1508 | DOI

[20] Paz J. T., Huguenard J. R., “Microcircuits and their interactions in epilepsy: Is the focus out of focus?”, Nature Neuroscience, 18 (2015), 351–359 | DOI

[21] Myers M. H., Kozma R., “Mesoscopic neuron population modeling of normal/epileptic brain dynamics”, Cognitive neurodynamics, 12 (2018), 211–223 | DOI

[22] Alexander A., Maroso M., Soltesz I., “Organization and control of epileptic circuits in temporal lobe epilepsy”, Progress in brain research, 226 (2016), 127–154 | DOI

[23] Toyoda I., Bower M. R., Leyva F., Buckmaster P. S., “Early activation of ventral hippocampus and subiculum during spontaneous seizures in a rat model of temporal lobe epilepsy”, Journal of Neuroscience, 33:27 (2013), 11100–11115 | DOI

[24] Muller R. U., Stead M., Pach J., “The hippocampus as a cognitive graph”, The Journal of general physiology, 107:6 (1996), 663–694 | DOI

[25] Petrik S., San Antonio-Arce V., Steinhoff B. J., Syrbe S., Bast T., Scheiwe C., Brandt A., Beck J., Schulze-Bonhage A., “Epilepsy surgery: Late seizure recurrence after initial complete seizure freedom”, Epilepsia, 62:5 (2021), 1092–1104 | DOI

[26] Medvedeva T. M., Sysoeva M. V., van Luijtelaar G., Sysoev I. V., “Modeling spike-wave discharges by a complex network of neuronal oscillators”, Neural Networks, 98 (2018), 271–282 | DOI

[27] Gerster M., Berner R., Sawicki J., Zakharova A., Hlinka J., Lehnertz K., Schöll E., “FitzHugh–Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena”, Chaos, 30 (2020), 123130 | DOI | MR