Electrodynamic approach for calculating the absorption spectra of plasmons in a rectangle with a two-dimensional electron gas excited by an incident electromagnetic wave
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 347-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this research is to develop an electrodynamic method for calculating the plasmon spectrum in a three-dimensional structure with a two-dimensional electron gas excited by an incident electromagnetic wave. Methods. The developed method is based on solving integral equations formed with respect to induced currents in the conducting parts of a three-dimensional structure. Results. The convergence of the method and the calculation time were studied. The conditions for the convergence of calculations of higher plasmon resonances in a rectangular structure with a two-dimensional electron gas are determined. The normal incidence of an arbitrarily polarized electromagnetic wave on a rectangle with a two-dimensional gas is studied. The spectra of the absorption, extinction, forward and back scattering cross sections of the incident wave are calculated. Conclusion. It is found that in a rectangular structure containing a two-dimensional electron gas, the spectrum of plasmon resonances is modified in comparison with established by two-dimensional models of problem formulation, in which the structure is assumed to be infinite and homogeneous in one of the directions. It has been established that the incident wave most effectively excites fundamental plasmon modes. Plasmonic modes exhibit strong charge accumulation at the edges of the rectangle, which significantly affects the resonant excitation frequencies of plasmonic modes.
Keywords: integral equations method, plasmon, two-dimensional electron gas, terahertz
@article{IVP_2024_32_3_a4,
     author = {D. V. Fateev and K. V. Mashinsky},
     title = {Electrodynamic approach for calculating the absorption spectra of plasmons in a rectangle with a two-dimensional electron gas excited by an incident electromagnetic wave},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {347--356},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a4/}
}
TY  - JOUR
AU  - D. V. Fateev
AU  - K. V. Mashinsky
TI  - Electrodynamic approach for calculating the absorption spectra of plasmons in a rectangle with a two-dimensional electron gas excited by an incident electromagnetic wave
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 347
EP  - 356
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a4/
LA  - ru
ID  - IVP_2024_32_3_a4
ER  - 
%0 Journal Article
%A D. V. Fateev
%A K. V. Mashinsky
%T Electrodynamic approach for calculating the absorption spectra of plasmons in a rectangle with a two-dimensional electron gas excited by an incident electromagnetic wave
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 347-356
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a4/
%G ru
%F IVP_2024_32_3_a4
D. V. Fateev; K. V. Mashinsky. Electrodynamic approach for calculating the absorption spectra of plasmons in a rectangle with a two-dimensional electron gas excited by an incident electromagnetic wave. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 347-356. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a4/

[1] Popov V. V., “Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures”, Journal of Infrared, Millimeter, and Terahertz Waves, 32 (2011), 1178–1191 | DOI

[2] Meziani Y. M., Handa H., Knap W., Otsuji T., Sano E., Popov V. V., Tsymbalov G. M., Coquillat D., Teppe F., “Room temperature terahertz emission from grating coupled two-dimensional plasmons”, Applied Physics Letters, 92:20 (2008), 201108 | DOI

[3] Popov V. V., Polischuk O. V., Shur M. S., “Resonant excitation of plasma oscillations in a partially gated two-dimensional electron layer”, Journal of Applied Physics, 98:3 (2005), 033510 | DOI

[4] Fateev D. V., Mashinsky K. V., Polischuk O. V., Popov V. V., “Excitation of propagating plasmons in a periodic graphene structure by incident terahertz waves”, Physical Review Applied, 11:6 (2019), 064002 | DOI

[5] Marem’yanin K. V., Ermolaev D. M., Fateev D. V, Morozov S. V., Maleev N. A., Zemlyakov V. E., Gavrilenko V. I., Popov V. V., Shapoval S. Yu., “Wide-aperture detector of terahertz radiation based on GaAs/InGaAs transistor structure with large-area slit grating gate”, Technical Physics Letters, 36 (2010), 365–368 | DOI

[6] Popov V. V., Tsymbalov G. M., Shur M. S., Knap W., “The resonant terahertz response of a slot diode with a two-dimensional electron channel”, Semiconductors, 39:1 (2005), 142–146 | DOI

[7] Allen S. J. Jr, Stormer H. L., Hwang J. C. M., “Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures”, Phys. Rev. B, 28 (1983), 4875 | DOI | MR

[8] Fetter A. L., “Magnetoplasmons in a two-dimensional electron fluid: Disk geometry”, Physical Review B, 33:8 (1986), 5221 | DOI

[9] Dahl C., Kotthaus J. P., Nickel H., Schlapp W., “Magnetoplasma resonances in two-dimensional electron rings”, Physical Review B, 48 (1993), 15480 | DOI

[10] Mikhailov S., “Radiative decay of collective excitations in an array of quantum dots”, Physical Review B, 54:15 (1996), 10335 | DOI

[11] Kovalskii V. A., Gubarev S. I., Kukushkin I. V., Mikhailov S. A., Smet J. H., von Klitzing K., Wegscheider W., “Microwave response of two-dimensional electron rings”, Physical Review B, 73:19 (2006), 195302 | DOI

[12] Rodionov D. A., Zagorodnev I. V., “Oscillations in radiative damping of plasma resonances in a gated disk of a two-dimensional electron gas”, Physical Review B, 106:23 (2022), 235431 | DOI

[13] Zarezin A. M., Mylnikov D., Petrov A. S., Svintsov D., Gusikhin P. A., Kukushkin I. V., Muravev V. M., “Plasmons in a square of two-dimensional electrons”, Physical Review B, 107:7 (2023), 075414 | DOI

[14] Dawood A., Park S. J., Parker-Jervis R., Wood C, Li L., Linfield E. H., Davies A. G., Cunningham J. E., Sydoruk O., “Effect of mesa geometry on low-terahertz frequency range plasmons in two-dimensional electron systems”, J. Phys. D: Appl. Phys., 55 (2022), 015103 | DOI

[15] Mylnikov D., Svintsov D., “Limiting capabilities of two-dimensional plasmonics in electromagnetic wave detection”, Physical Review Appl., 17:6 (2022), 064055 | DOI

[16] Nikitin A. Y., Alonso-González P., Vélez S., Mastel S., Centeno A., Pesquera A., Zurutuza A., Casanova F., Hueso L. E., Koppens F. H. L., Hillenbrand R., “Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators”, Nat. Photonics, 10 (2016), 239 | DOI

[17] Popov V. V., Yermolaev D. M., Maremyanin K. V., Zemlyakov V. E., Maleev N. A., Gavrilenko V. I., Bespalov V. A., Yegorkin V. I., Ustinov V. M, Shapoval S. Yu., “Detection of terahertz radiation by tightly concatenated InGaAs field-effect transistors integrated on a single chip”, Applied Physics Letters, 104:16 (2014), 163508 | DOI