Spectral approach with iterative clarification of a radiation boundary conditions for modeling of quasimodes of a gyrotrons open cavities
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 305-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose. The article presents a new method for numerical simulation of quasi-eigenmode oscillations in open resonators of gyrotrons - powerful vacuum generators of electromagnetic waves in the millimeter and submillimeter ranges. The gyrotron cavity has the shape of a weakly inhomogeneous hollow circular metal waveguide. Methods. The proposed approach uses the inhomogeneous string equation with radiation boundary conditions to formulate a nonlinear spectral boundary value problem describing oscillations in a resonator, neglecting the couplings of waves with different radial indices. By linearizing with respect to frequency the radiation boundary conditions, the boundary value problem is reduced to a linear boundary value problem. To discretize this boundary value problem, the finite difference method is used and a linear generalized matrix eigenvalue problem is formulated. This problem is solved by the Arnoldi method with eigenvalues calculation in a shift-invert mode. An iterative algorithm is proposed that makes it possible to sequentially calculate a given number of frequencies and quality factors of quasi-eigenmodes of oscillations. Results. The computer program was developed written in the Wolfram Language and Fortran using the algorithms proposed in the work. The results of test calculations for real gyrotron resonators are presented, which demonstrate the high accuracy of the obtained values of frequencies, quality factors and field distributions of quasi-eigenmode oscillations in the studied resonators. Conclusion. The methods, algorithms and created program proposed in the article can significantly facilitate the process of developing gyrotrons intended for various practical applications and operating in new frequency ranges. The method of iterative refinement of boundary conditions can be generalized to the case of equations of the linear theory of a gyrotron and used to develop new methods for analyzing the starting conditions for the soft self-excitation in gyrotrons - generators.
Keywords: Gyrotron, open cavity, high order axial modes, radiation boundary condition, finite difference method, generalized matrix eigenvalue problem, Arnoldi method
@article{IVP_2024_32_3_a2,
     author = {A. G. Rozhnev and M. M. Melnikova and N. M. Ryskin},
     title = {Spectral approach with iterative clarification of a radiation boundary conditions for modeling of quasimodes of a gyrotrons open cavities},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {305--331},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a2/}
}
TY  - JOUR
AU  - A. G. Rozhnev
AU  - M. M. Melnikova
AU  - N. M. Ryskin
TI  - Spectral approach with iterative clarification of a radiation boundary conditions for modeling of quasimodes of a gyrotrons open cavities
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 305
EP  - 331
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a2/
LA  - ru
ID  - IVP_2024_32_3_a2
ER  - 
%0 Journal Article
%A A. G. Rozhnev
%A M. M. Melnikova
%A N. M. Ryskin
%T Spectral approach with iterative clarification of a radiation boundary conditions for modeling of quasimodes of a gyrotrons open cavities
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 305-331
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a2/
%G ru
%F IVP_2024_32_3_a2
A. G. Rozhnev; M. M. Melnikova; N. M. Ryskin. Spectral approach with iterative clarification of a radiation boundary conditions for modeling of quasimodes of a gyrotrons open cavities. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 305-331. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a2/

[1] Flyagin V. A., Gaponov A. V., Petelin M. I., Yulpatov V. K., “The gyrotron”, IEEE Transactions on Microwave Theory and Techniques, 25:6 (1977), 514–521 | DOI

[2] Nusinovich G. S., Introduction to the Physics of Gyrotron, Johns Hopkins University Press, Baltinore and London, 2004, 335 pp.

[3] Kartikeyan M. V., Borie E., Thumm M., Gyrotrons: High-Power Microwave and Millimeter Wave Technology, Springer Verlag, Berlin, Heidelberg, New York, 2003, 228 pp.

[4] Thumm M., “Progress on gyrotrons for ITER and future thermonuclear fusion reactors”, IEEE Transactions on Plasma Science, 39:4 (2011), 971–979 | DOI

[5] Glyavin M. Y., Idehara T., Sabchevski S. P., “Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high-power THz technologies”, IEEE Transactions on Terahertz Science and Technology, 5:5 (2015), 788–797 | DOI

[6] Hornstein M. K., Bajaj V. S., Griffin R. G., Kreischer K. E., Mastovsky I., Sirigiri J. R., Shapiro M. A., Temkin R. J., “Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator”, IEEE Transactions on Electron Devices, 52:5 (2005), 798–807 | DOI

[7] Chang T. H., Idehara T., Ogawa I., Agusu L., Kobayashi S.“. Frequency tunable gyrotron using backward-wave components”, Journal of Applied Physics, 105:6 (2009), 063304 | DOI

[8] Torrezan A. C., Han S. T., Mastovsky I., Shapiro M. A., Sirigiri J. R., Temkin R. J., Barnes A. B., Griffin R. G., “Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance”, IEEE Transactions on Plasma Science, 8:6 (2010), 1150–1159 | DOI

[9] Torrezan A. C., Shapiro A. C., Sirigiri J. R., Temkin R. J., Griffin R. G., “Operation of a continuously frequency-tunable second-harmonic {CW} 330-GHz gyrotron for dynamic nuclear polarization”, IEEE Transaction on Electron Devices, 58:8 (2011), 2777–2783 | DOI

[10] Glyavin M. Yu., Denisov G. G., Zapevalov V. E., Koshelev M. A., Tretyakov M. Yu., Tsvetkov A. I., “Istochniki moschnogo teragertsevogo izlucheniya dlya spektroskopii i diagnostiki razlichnykh sred”, UFN, 186:6 (2016), 667–677 | DOI

[11] Sabchevski S., Glyavin M., “Development and application of THz gyrotrons for advanced spectroscopic methods”, Photonics, 12:2 (2023), 189–207 | DOI

[12] Siegel P. H., “Terahertz technology in biology and medicine”, IEEE Transactions on Microwave Theory and Techniques, 52:10 (2004), 2438–2447 | DOI

[13] Pilossof M., Einat M., “Note: A 95 GHz mid-power gyrotron for medical applications measurements”, Review of Scientific Instruments, 86:1 (2015), 016113 | DOI

[14] Cheon H., Yang H. J., Lee S. H., Kim Y. A., Son J. H., “Terahertz molecular resonance of cancer DNA”, Scientific Reports, 6:1 (2016), 37103 | DOI

[15] Miyoshi N., Idehara T., Khutoryan E., Fukunaga Y., Bibin A. B., Ito S., Sabchevski S. P., “Combined hyperthermia and photodynamic therapy using a sub-THz gyrotron as a radiation source”, Journal of Infrared, Millimeter, and Terahertz Waves, 37:8 (2016), 805–814 | DOI

[16] Bykov Y., Eremeev A., Glyavin M., Kholoptsev V., Luchinin A., Plotnikov G. Denisov A., Bogdashev G., Kalynova V., Semenov N., Zharova N., “24-84-GHz gyrotron systems for technological microwave applications”, IEEE Transactions on Plasma Science, 32:1 (2004), 67–72 | DOI

[17] Bratman V. L., Bogdashov A. A., Denisov G. G., Glyavin M. Yu., Kalynov Yu. K., Luchinin A. G., Manuilov V. N., Zapevalov V. E., Zavolsky N. A., Zorin V. G., “Gyrotron development for high power THz technologies at IAP RAS”, Journal of Infrared, Millimeter, and Terahertz Waves, 33:7 (2012), 715–723 | DOI

[18] Aripin H., Mitsudo S., Prima E. S., Sudiana I. N., Tani S., Sako K., Fujii Y., Saito T., Idehara T., Sano S., Purwasasmita B. S., Sabchevski S., “Structural and microwave properties of silica xerogel glass-ceramic sintered by sub-millimeter wave heating using a gyrotron”, Journal of Infrared, Millimeter, and Terahertz Waves, 33:12 (2012), 1149–1162 | DOI

[19] Glyavin M., Sabchevski S., Idehara T., Mitsudo S., “Gyrotron-Based Technological Systems for Material Processing – Current Status and Prospects”, Journal of Infrared, Millimeter, and Terahertz Waves, 41:8 (2020), 1022-–1037 | DOI

[20] Federici J., Moeller L., “Review of terahertz and subterahertz wireless communications”, Jourmal of Applied Physics, 107:11 (2010) | DOI

[21] Idehara T., Mitsudo S., Ogawa I., “Development of high-frequency, highly stable gyrotrons as millimeter to submillimeter wave radiation sources”, IEEE Transactions on Plasma Science, 32:3 (2004), 910–916 | DOI

[22] Idehara T., Tsuchiya H., Watanabe O., Agusu L., Mitsudo S., “The first experiment of a THz gyrotron with a pulse magnet”, International Journal of Infrared and Millimeter Waves, 27:3 (2006), 319–331 | DOI

[23] Glyavin M. Yu., Luchinin A. G., Golubiatnikov G. Yu., “Generation of 1.5-k{W}, 1-THz Coherent radiation from a gyrotron with a pulsed magnetic field”, Phys. Rev. Lett., 100 (2008), 015101 | DOI

[24] Bratman V. L., Kalynov Yu. K., Manuilov V. N., “Large-orbit gyrotron operation in the terahertz frequency range”, Phys. Rev. Lett., 102 (2009), 245101 | DOI

[25] Bandurkin I. Fedotov A., Glyavin M., Idehara T., Malkin A., Manuilov V., Sergeev A. Tsvetkov A., Zaslavsky V., Zotova I., “Development of third-harmonic 1.2-THz gyrotron with intentionally increased velocity spread of electrons”, IEEE Transactions on Electron Devices, 67:10 (2020), 4432–4436 | DOI

[26] Botton M., Antonsen T. M., Levush B., Nguyen K. T., Vlasov A. N., “{MAGY}: A time-dependent code for simulation of slow and fast microwave sources”, IEEE Transactions on Plasma Science, 26:3 (1998), 882–892 | DOI

[27] Stock A., Neudorfer J., Riedlinger M., Pirrung G., Gassner G., Schneider R., Roller S., Munz C. D., “Three-dimensional numerical simulation of a 30-GHz gyrotron resonator with an explicit high-order discontinuous-Galerkin-based parallel article-in-cell method”, IEEE Transactions on Plasma Science, 40:7 (2012), 1860–1870 | DOI

[28] Lin M. C., Smithe D. N., Guss W. C., Temkin R. J., “Hot test of gyrotron cavity interaction using a 3D CFDTD PIC method”, 15th IEEE International Vacuum Electronics Conference (22-24 April 2014, Monterey, CA, USA), IEEE, 2014, 87–88 | DOI

[29] Rozental R. M., Tai E. M., Tarakanov V. P., Fokin A. P., “Ispolzovanie 2,5-mernogo PIC-koda dlya modelirovaniya girotronov s nesimmetrichnymi rabochimi modami”, Izvestiya vuzov. Radiofizika, 65:5 (2022), 420–433 | DOI

[30] Fliflet A. W., Read M. E., “Use of weakly irregular waveguide theory to calculate eigenfrequencies, Q values, and RF field functions for gyrotron oscillators”, International Journal of Electronics Theoretical and Experimental, 51:4 (1981), 475–484 | DOI

[31] Borie E., Dumbrajs O., “Calculation of eigenmodes of tapered gyrotron resonators”, International Journal of Electronics, 60:2 (1986), 143–154 | DOI

[32] Sabchevski S., Idehara T., Saito T., Ogawa I., Mitsudo S., Tatematsu Y., “Physical models and computer codes of the GYROSIM (GYROtron SIMulation) software package”, FIR Center Report FIR FU-99, 2010 http://fir.u-fukui.ac.jp/FIR_FU99S.pdf

[33] Avramides K. A., Pagonakis I. G., Iatrou C. T., Vomvoridis J. L., “EURIDICE: A code-package for gyrotron interaction simulations and cavity design”, EPJ Web of Conferences, 32 (2012), 04016 | DOI

[34] Melnikova M. M., Rozhnev A. G., Programma rascheta elektrodinamicheskikh parametrov sobstvennykh mod v girotrone s nefiksirovannoi strukturoi polya, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM # 2015615762 ot 22 maya 2015 g.

[35] Bera A., Sinha A. K., “A novel approach for computation of high-order axial modes in a gyrotron resonator”, IEEE Transactions on Electron Devices, 65:12 (2018), 5505–5510 | DOI

[36] Sawant A., Choi E., “Development of the full package of gyrotron simulation code”, Journal of the Korean Physical Society, 73:11 (2018), 1750–1759 | DOI

[37] Wang P., Chen X., Xiao H., Dumbrajs O., Qi X., Li L., “GYROCOMPU: Toolbox designedfor the analysis of gyrotron resonators”, IEEE Transactions on Plasma Science, 48:9, 3007–3016 | DOI | MR

[38] Semenov E., Zapevalov V., Zuev A., “Methods for simulation the nonlinear dynamics of gyrotrons”, Mathematical Modeling and Supercomputer Technologies, MMST 2020. Communications in Computer and Information Science, 1413, eds. Balandin D., Barkalov K., Gergel V., Meyerov I., Springer, 2021, 49–62 | DOI | MR

[39] Vainshtein L. A., Otkrytye rezonatory i otkrytye volnovody, Sov. radio, M., 1966, 475 pp.

[40] Vlasov S. N., Zhislin G. M., Orlova I. M., Petelin M. I., Rogacheva G. G., “Otkrytye rezonatory v vide volnovodov peremennogo secheniya”, Izvestiya vuzov. Radiofizika, 12:8 (1969), 1236–1244

[41] Vlasov S. N., Orlova I. M., Petelin M. I., “Rezonatory girotronov i elektrodinamicheskaya selektsiya mod”, Girotron, ed. A. V. Gaponov-Grekhov, IPF AN SSSR, Gorkii, 1981, 62–76

[42] Chu K. R., Kou C. S., Chen J. M., Tsai Y. C., Cheng C., Bor S. S., Chang L. H., “Spectral domain analysis of open cavities”, International Journal of Infrared and Millimeter Waves, 13:10 (1992), 1571–1598 | DOI | MR

[43] Hung C. L., Tsai Y. C.,Chu K. R., “A study of open-end cavities by the field-energy method”, IEEE Transactions on Plasma Science, 26:3 (1998), 931–939 | DOI

[44] Hung C. L., Yeh Y. S., “Spectral domain analysis of coaxial cavities”, International Journal of Infrared and Millimeter Waves, 24:12 (2003), 2025–2041 | DOI

[45] Sabchevski S. P., Idehara T., “A numerical study on finite-bandwidth resonances of high-order axial modes (HOAM) in a gyrotron cavity”, Journal of Infrared, Millimeter, and Terahertz Waves, 36:7 (2015), 628–653 | DOI

[46] Genoud J., Tran T. M., Alberti S., Braunmueller F., Hogge J.-Ph., Tran M. Q., Guss W. C. Temkin R. J., “Novel linear analysis for a gyrotron oscillator based on a spectral approach”, Physics of Plasmas, 2:4 (2016), 043101 | DOI

[47] Ilinskii A. C., Slepyan G. Ya., Kolebaniya i volny v elektrodinamicheskikh sistemakh s poteryami, MGU, M., 1983, 232 pp. | MR

[48] Genoud J., Alberti S., Tran T. M., Le Bars G., Kaminski P., Hogge J. P., Avramidis K. A., Tran M. Q., “Parasitic oscillations in smooth-wall circular symmetric gyrotron beam ducts”, Journal of Infrared, Millimeter, and Terahertz Waves, 40:2 (2019), 131–149 | DOI

[49] Chu K. R., Chen H. Y., Hung C. L., Chang T. H., Barnett L. R., Chen S. H., Yang T. T., Dialetis D.J., “Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier”, IEEE Transactions on Plasma Science, 27:2 (1999), 391–404 | DOI

[50] Parlett B., Simmetrichnaya problema sobstvennykh znachenii. Chislennye metody, Mir, M., 2001, 384 pp.

[51] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001, 430 pp.

[52] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999, 548 pp.

[53] Lehoucq R. B., Sorensen D. C. Yang C., “ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods”, Society for Industrial and Applied Mathematics, 1997 | MR | Zbl

[54] Petelin M. I., Yulpatov V. K., “Lineinaya teoriya {MTsR}-monotrona. І.”, Izvestiya Vuzov. Radiofizika, 18:2 (1975), 290–299

[55] Petelin M. I., “Samovozbuzhdenie kolebanii v girotrone”, Girotron: Sb. nauchn. trudov, ed. A. V. Gaponov-Grekhov, IPF AN SSSR, Gorkii, 1981, 5–25

[56] Borie E., Jödicke B., “Comments on the Linear Theory of the Gyrotron”, IEEE Transaction on Plasma Science, 16:2 (1988), 116–121 | DOI

[57] Rozhnev A.G., Adilova A.B., Grigoreva N.V., Ryskin N.M., Programma rascheta svoistv prodolnykh mod kolebanii v otkrytom rezonatore girotrona metodom konechnykh raznostei s linearizovannymi po spektralnomu parametru granichnymi usloviyami («GyrotronCavityFDM»), Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM # 2033613828 ot 09 marta 2023 g.

[58] Yamaguchi Y., Tatematsu Y., Saito T., Kuwahara T., Ikeda R., Ogawa I., Idehara T., Dumbrajs O., “Experimental verification of a self-consistent calculation for continuous frequency-tune with a 400 GHz band second harmonic gyro-BWO”, 38th Int. Conf. on Infr., Mill. and Terahertz Waves, IRMMW-THz (01-06 September 2013, Mainz, Germany), IEEE, New York, 2013, 1–2 | DOI

[59] Kumar A., Kumar N., Singh U., Khatun H., Vyas V., Sinha A. K., “Design of interaction cavity of a 170-GHz, 1-MW gyrotron for ECRH application”, Vacuum, 86:2 (2011), 184–188 | DOI

[60] Thumm M., “Effective cavity length of gyrotrons”, Journal of Infrared, Millimeter, and Terahertz Waves, 35:12, 1011–1017 | DOI

[61] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp. | MR