High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 294-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to develop a compact finite-difference approach for modeling the dynamics of predator and prey based on reaction-diffusion-advection equations with variable coefficients. Methods. To discretize a spatially inhomogeneous problem with nonlinear terms of taxis and local interaction, the balance method is used. Species densities are determined on the main grid whereas fluxes are computed at the nodes of the staggered grid. Integration over time is carried out using the high-order Runge-Kutta method. Results. For the case of one-dimensional annular interval, the finite-difference scheme on the three-point stencil has been constructed that makes it possible to increase the order of accuracy compared to the standard second-order approximation scheme. The results of computational experiment are presented and comparison of schemes for stationary and non-stationary solutions is carried out. We conduct the calculation of accuracy order basing on the Aitken process for sequences of spatial grids. The calculated values of the effective order accuracy for the proposed scheme were greater than the standard two: for the diffusion problem, values of at least four were obtained. Decrease was obtained when directional migration was taken into account. This conclusion was also confirmed for non-stationary oscillatory regimes. Conclusion. The results demonstrate the effectiveness of the derived scheme for dynamics of predator and prey system in a heterogeneous environment.
Keywords: compact schemes, heterogeneous environment, predator and prey systems
@article{IVP_2024_32_3_a1,
     author = {B. H. Nguyen and V. G. Tsybulin},
     title = {High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {294--304},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/}
}
TY  - JOUR
AU  - B. H. Nguyen
AU  - V. G. Tsybulin
TI  - High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 294
EP  - 304
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/
LA  - ru
ID  - IVP_2024_32_3_a1
ER  - 
%0 Journal Article
%A B. H. Nguyen
%A V. G. Tsybulin
%T High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 294-304
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/
%G ru
%F IVP_2024_32_3_a1
B. H. Nguyen; V. G. Tsybulin. High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 294-304. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/

[1] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 232 pp. | MR

[2] Tolstykh A. I., Kompaktnye i multioperatornye approksimatsii vysokoi tochnosti dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2015, 350 pp.

[3] Zhang L., Ge Y., “Numerical solution of nonlinear advection diffusion reaction equation using high-order compact difference method”, Applied Numerical Mathematics, 166 (2021), 127–145 | DOI | MR | Zbl

[4] Deka D., Sen S., “Compact higher order discretization of 3D generalized convection diffusion equation with variable coefficients in nonuniform grids”, Applied Mathematics and Computation, 413:5 (2022), 126652 | DOI | MR | Zbl

[5] Matus P. P., Utebaev B. D., “Kompaktnye i monotonnye raznostnye skhemy dlya obobschennogo uravneniya Fishera”, Differentsialnye uravneniya, 58:7 (2022), 947–961 | DOI

[6] He M., Liao W., “A compact ADI finite difference method for 2D reaction–diffusion equations with variable diffusion coefficients”, Journal of Computational and Applied Mathematics, 436 (2024), 115400 | DOI | MR

[7] Xu P., Ge Y., Zhang L., “High-order finite difference approximation of the Keller-Segel model with additional self-and cross-diffusion terms and a logistic source”, Networks Heterogeneous Media, 18:4 (2022), 1471–1492 | DOI | MR

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp.

[9] Kalitkin N. N., Chislennye metody, BKhV-Peterburg, SPb., 2011, 592 pp.

[10] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[11] Myurrei Dzh., Matematicheskaya biologiya, v. 2, Prostranstvennye modeli i ikh prilozheniya v biomeditsine, NITs Regulyarnaya i khaoticheskaya dinamika, Institut kompyuternykh issledovanii, M.-Izhevsk, 2011, 1104 pp.

[12] Rubin A., Riznichenko G., Mathematical biophysics, Springer, New York, 2014, 273 pp. | DOI | Zbl

[13] Cantrell R. S., Cosner C., Spatial Ecology Via Reaction–Diffusion Equations, John Wiley and Sons Ltd, Chichester, 2003, 428 pp. | DOI | MR | Zbl

[14] Malchow H., Petrovskii S. V., Venturino E., Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation, Chapman and Hall, New York, 2008, 469 pp. | MR | Zbl

[15] Budyansky A. V., Frischmuth K., Tsybulin V. G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete Continuous Dynamical Systems – B, 24:2 (2019), 547–561 | DOI | MR | Zbl

[16] Budyanskii A. V., Tsibulin V. G., “Modelirovanie mnogofaktornogo taksisa v sisteme «khischnik–zhertva»”, Biofizika, 64:2, S (2019), 343–349 | DOI

[17] Tsibulin V. G., Kha T. D., Zelenchuk P. A., “Nelineinaya dinamika sistemy khischnik-zhertva na neodnorodnom areale i stsenarii lokalnogo vzaimodeistviya vidov”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 29:5 (2021), 751–764 | DOI | MR