Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_3_a1, author = {B. H. Nguyen and V. G. Tsybulin}, title = {High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {294--304}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/} }
TY - JOUR AU - B. H. Nguyen AU - V. G. Tsybulin TI - High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 294 EP - 304 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/ LA - ru ID - IVP_2024_32_3_a1 ER -
%0 Journal Article %A B. H. Nguyen %A V. G. Tsybulin %T High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 294-304 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/ %G ru %F IVP_2024_32_3_a1
B. H. Nguyen; V. G. Tsybulin. High order accuracy scheme for modeling the dynamics of predator and prey in heterogeneous environment. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 3, pp. 294-304. http://geodesic.mathdoc.fr/item/IVP_2024_32_3_a1/
[1] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 232 pp. | MR
[2] Tolstykh A. I., Kompaktnye i multioperatornye approksimatsii vysokoi tochnosti dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2015, 350 pp.
[3] Zhang L., Ge Y., “Numerical solution of nonlinear advection diffusion reaction equation using high-order compact difference method”, Applied Numerical Mathematics, 166 (2021), 127–145 | DOI | MR | Zbl
[4] Deka D., Sen S., “Compact higher order discretization of 3D generalized convection diffusion equation with variable coefficients in nonuniform grids”, Applied Mathematics and Computation, 413:5 (2022), 126652 | DOI | MR | Zbl
[5] Matus P. P., Utebaev B. D., “Kompaktnye i monotonnye raznostnye skhemy dlya obobschennogo uravneniya Fishera”, Differentsialnye uravneniya, 58:7 (2022), 947–961 | DOI
[6] He M., Liao W., “A compact ADI finite difference method for 2D reaction–diffusion equations with variable diffusion coefficients”, Journal of Computational and Applied Mathematics, 436 (2024), 115400 | DOI | MR
[7] Xu P., Ge Y., Zhang L., “High-order finite difference approximation of the Keller-Segel model with additional self-and cross-diffusion terms and a logistic source”, Networks Heterogeneous Media, 18:4 (2022), 1471–1492 | DOI | MR
[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp.
[9] Kalitkin N. N., Chislennye metody, BKhV-Peterburg, SPb., 2011, 592 pp.
[10] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR
[11] Myurrei Dzh., Matematicheskaya biologiya, v. 2, Prostranstvennye modeli i ikh prilozheniya v biomeditsine, NITs Regulyarnaya i khaoticheskaya dinamika, Institut kompyuternykh issledovanii, M.-Izhevsk, 2011, 1104 pp.
[12] Rubin A., Riznichenko G., Mathematical biophysics, Springer, New York, 2014, 273 pp. | DOI | Zbl
[13] Cantrell R. S., Cosner C., Spatial Ecology Via Reaction–Diffusion Equations, John Wiley and Sons Ltd, Chichester, 2003, 428 pp. | DOI | MR | Zbl
[14] Malchow H., Petrovskii S. V., Venturino E., Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation, Chapman and Hall, New York, 2008, 469 pp. | MR | Zbl
[15] Budyansky A. V., Frischmuth K., Tsybulin V. G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete Continuous Dynamical Systems – B, 24:2 (2019), 547–561 | DOI | MR | Zbl
[16] Budyanskii A. V., Tsibulin V. G., “Modelirovanie mnogofaktornogo taksisa v sisteme «khischnik–zhertva»”, Biofizika, 64:2, S (2019), 343–349 | DOI
[17] Tsibulin V. G., Kha T. D., Zelenchuk P. A., “Nelineinaya dinamika sistemy khischnik-zhertva na neodnorodnom areale i stsenarii lokalnogo vzaimodeistviya vidov”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 29:5 (2021), 751–764 | DOI | MR