Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_2_a8, author = {A. A. Lebedev and V. B. Kazantsev and S.V. Stasenko}, title = {Study of the influence of synaptic plasticity on the formation of a feature space by a spiking neural network}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {253--267}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a8/} }
TY - JOUR AU - A. A. Lebedev AU - V. B. Kazantsev AU - S.V. Stasenko TI - Study of the influence of synaptic plasticity on the formation of a feature space by a spiking neural network JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 253 EP - 267 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a8/ LA - ru ID - IVP_2024_32_2_a8 ER -
%0 Journal Article %A A. A. Lebedev %A V. B. Kazantsev %A S.V. Stasenko %T Study of the influence of synaptic plasticity on the formation of a feature space by a spiking neural network %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 253-267 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a8/ %G ru %F IVP_2024_32_2_a8
A. A. Lebedev; V. B. Kazantsev; S.V. Stasenko. Study of the influence of synaptic plasticity on the formation of a feature space by a spiking neural network. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 2, pp. 253-267. http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a8/
[1] Song S., Miller K. D., Abbott L. F., “Competitive Hebbian learning through spike-timing-dependent synaptic plasticity”, Nature Neuroscience, 3:9 (2000), 919–926 | DOI
[2] Thorpe S., Delorme A., Van Rullen R., “Spike-based strategies for rapid processing”, Neural Networks, 14:6–7 (2001), 715–725 | DOI
[3] Loiselle S., Rouat J., Pressnitzer D., Thorpe S., “Exploration of rank order coding with spiking neural networks for speech recognition”, Proceedings 2005 IEEE International Joint Conference on Neural Networks (2005. 31 July 2005 - 04 August 2005, Montreal, QC, Canada), IEEE, New York, 2005, 2076–2080 | DOI
[4] Yamazaki K., Vo-Ho V.-K., Bulsara D., Le N., “Spiking neural networks and their applications: A review”, Brain Sciences, 12:7 (2022), 863 | DOI
[5] Bohte S. M., Kok J. N., La Poutré H., “Error-backpropagation in temporally encoded networks of spiking neurons”, Neurocomputing, 48:1–4 (2002), 17–37 | DOI | Zbl
[6] Markram H., Gerstner W., Sjöström P. J., “Spike-timing-dependent plasticity: a comprehensive overview”, Frontiers in Synaptic Neuroscience, 4 (2012), 2 | DOI
[7] Stasenko S. V., Kazantsev V. B., “Dynamic image representation in a spiking neural network supplied by astrocytes”, Mathematics, 11:3 (2023), 561 | DOI | MR
[8] Stasenko S. V., Kazantsev V. B., “Information encoding in bursting spiking neural network modulated by astrocytes”, Entropy, 25:5 (2023), 745 | DOI | MR
[9] Stasenko S. V., Mikhaylov A. N., Kazantsev V. B., “Model of neuromorphic odorant-recognition network”, Biomimetics, 8:3 (2023), 277 | DOI
[10] Gordleeva S. Y., Tsybina Y. A., Krivonosov M. I., Ivanchenko M. V., Zaikin A. A., Kazantsev V. B., Gorban A. N., “Modeling working memory in a spiking neuron network accompanied by astrocytes”, Frontiers in Cellular Neuroscience, 15 (2021), 631485 | DOI
[11] Masquelier T., Guyonneau R., Thorpe S., “Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains”, PLoS ONE, 3:1 (2008), e1377 | DOI
[12] Guo W., Fouda M. E., Eltawil A. M., Salama K. N., “Neural coding in spiking neural networks: A comparative study for robust neuromorphic systems”, Frontiers in Neuroscience, 15 (2021), 638474 | DOI
[13] Börgers C., “Linear integrate-and-fire (LIF) neurons”, An Introduction to Modeling Neuronal Dynamics, v. 66, Texts in Applied Mathematics, Springer, Cham, 2017, 45–50 | DOI | MR
[14] Bi G.-Q., Poo M.-M., “Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type”, J. Neurosci., 18:24 (1998), 10464–10472 | DOI
[15] Deng L., “The MNIST database of handwritten digit images for machine learning research [best of the web]”, IEEE Signal Processing Magazine, 29:6 (2012), 141–142 | DOI
[16] Sterratt D., Graham B., Gillies A., Willshaw D., Principles of Computational Modelling in Neuroscience, Cambridge University Press, Cambridge, 2011, 390 pp. | DOI | MR
[17] Chen Y., “Mechanisms of winner-take-all and group selection in neuronal spiking networks”, Frontiers in Computational Neuroscience, 11 (2017), 20 | DOI