Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_1_a9, author = {A. D. Ryabchenko and E. V. Rybalova and G. I. Strelkova}, title = {Influence of additive noise on chimera and solitary states in neural networks}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {121--140}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a9/} }
TY - JOUR AU - A. D. Ryabchenko AU - E. V. Rybalova AU - G. I. Strelkova TI - Influence of additive noise on chimera and solitary states in neural networks JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 121 EP - 140 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a9/ LA - ru ID - IVP_2024_32_1_a9 ER -
%0 Journal Article %A A. D. Ryabchenko %A E. V. Rybalova %A G. I. Strelkova %T Influence of additive noise on chimera and solitary states in neural networks %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 121-140 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a9/ %G ru %F IVP_2024_32_1_a9
A. D. Ryabchenko; E. V. Rybalova; G. I. Strelkova. Influence of additive noise on chimera and solitary states in neural networks. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 121-140. http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a9/
[1] Benzi R., Sutera A., Vulpiani A., “The mechanism of stochastic resonance”, Journal of Physics A: Mathematical and General, 14:11 (1981), L453–L457 | DOI
[2] Horsthemke W., Lefever R., “Noise-induced transitions in physics, chemistry, and biology”, Noise-Induced Transitions, v. 15, Springer Series in Synergetics, Springer, Berlin, Heidelberg, 1984, 164–200 | DOI
[3] Neiman A., “Synchronizationlike phenomena in coupled stochastic bistable systems”, Physical Review E, 49:4 (1994), 3484–3487 | DOI | MR
[4] Arnold L., “Random dynamical systems”, Dynamical Systems, v. 1609, Lecture Notes in Mathematics, ed. Johnson R., Springer, Berlin, Heidelberg, 1995, 1–43 | DOI | Zbl
[5] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Physical Review Letters, 78:5 (1997), 775–778 | DOI | MR | Zbl
[6] Anischenko V. S., Neiman A. B., Moss F., Shimanskii-Gaier L., “Stokhasticheskii rezonans kak indutsirovannyi shumom effekt uvelicheniya stepeni poryadka”, UFN, 169:1 (1999), 7–38 | DOI
[7] Goldobin D. S., Pikovsky A., “Synchronization and desynchronization of self-sustained oscillators by common noise”, Physical Review E, 71:4 (2005), 045201 | DOI | MR
[8] McDonnell M. D., Ward L. M., “The benefits of noise in neural systems: bridging theory and experiment”, Nature Reviews Neuroscience, 12:7 (2011), 415–425 | DOI
[9] Schimansky-Geier L., Herzel H., “Positive Lyapunov exponents in the Kramers oscillator”, Journal of Statistical Physics, 70:1–2 (1993), 141–147 | DOI | Zbl
[10] Shulgin B., Neiman A., Anishchenko V., “Mean switching frequency locking in stochastic bistable systems driven by a periodic force”, Physical Review Letters, 75:23 (1995), 4157–4160 | DOI
[11] Arnold L., Namachchivaya N. S., Schenk-Hoppé K. R., “Toward an understanding of stochastic Hopf bifurcation: A case study”, International Journal of Bifurcation and Chaos, 6:11 (1996), 1947–1975 | DOI | MR | Zbl
[12] Han S. K., Yim T. G., Postnov D. E., Sosnovtseva O. V., “Interacting coherence resonance oscillators”, Physical Review Letters, 83:9 (1999), 1771–1774 | DOI
[13] Bashkirtseva I., Ryashko L., Schurz H., “Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances”, Chaos, Solitons Fractals, 39:1 (2009), 72–82 | DOI | MR | Zbl
[14] Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S., “Stochastic resonance in bistable systems”, Physical Review Letters, 62:4 (1989), 349–352 | DOI
[15] Lindner B., Schimansky-Geier L., “Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance”, Physical Review E, 60:6 (1999), 7270–7276 | DOI
[16] Kuramoto Y., Battogtokh D., “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385
[17] Abrams D. M., Strogatz S. H., “Chimera states for coupled oscillators”, Physical Review Letters, 93:17 (2004), 174102 | DOI
[18] Omelchenko I., Maistrenko Y., Hövel P., Schöll E., “Loss of coherence in dynamical networks: Spatial chaos and chimera states”, Physical Review Letters, 106:23 (2011), 234102 | DOI
[19] Panaggio M. J., Abrams D. M., “Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2015), R67 | DOI | MR | Zbl
[20] Zakharova A., Chimera Patterns in Networks: Interplay between Dynamics, Structure, Noise, and Delay, Springer, Cham, 2020, 233 pp. | DOI | Zbl
[21] Maistrenko Y., Penkovsky B., Rosenblum M., “Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions”, Physical Review E, 89:6 (2014), 060901 | DOI | MR
[22] Jaros P., Maistrenko Y., Kapitaniak T., “Chimera states on the route from coherence to rotating waves”, Physical Review E, 91:2 (2015), 022907 | DOI
[23] Bogomolov S. A., Slepnev A. V., Strelkova G. I., Schöll E., Anishchenko V. S., “Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems”, Communications in Nonlinear Science and Numerical Simulation, 43 (2017), 25–36 | DOI | MR | Zbl
[24] Panaggio M. J., Abrams D. M., “Chimera states on a flat torus”, Physical Review Letters, 110:9 (2013), 094102 | DOI
[25] Sawicki J., Omelchenko I., Zakharova A., Schöll E., “Chimera states in complex networks: interplay of fractal topology and delay”, The European Physical Journal Special Topics, 226:9 (2017), 1883–1892 | DOI
[26] Schöll E., “Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics”, The European Physical Journal Special Topics, 225:6–7 (2016), 891–919 | DOI
[27] Schöll E., “Chimeras in physics and biology: Synchronization and desynchronization of rhythms”, Zeit in Natur und Kultur: Vorträge anlässlich der Jahresversammlung am 20. und 21. September 2019 in Halle (Saale), eds. Hacker J., Lengauer T., Wissenschaftliche Verlagsgesellschaft, Stuttgart, 2021, 67–95 | DOI
[28] Semenova N., Zakharova A., Schöll E., Anishchenko V., “Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?”, Europhysics Letters, 112:4 (2015), 40002 | DOI | MR
[29] Shima S., Kuramoto Y., “Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators”, Physical Review E, 69:3 (2004), 036213 | DOI
[30] Ulonska S., Omelchenko I., Zakharova A., Schöll E., “Chimera states in networks of Van der Pol oscillators with hierarchical connectivities”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26:9 (2016), 094825 | DOI | MR
[31] Zakharova A., Kapeller M., Schöll E., “Chimera death: Symmetry breaking in dynamical networks”, Physical Review Letters, 112:15 (2014), 154101 | DOI
[32] Menck P. J., Heitzig J., Kurths J., Schellnhuber H. J., “How dead ends undermine power grid stability”, Nature Communications, 5:1 (2014), 3969 | DOI
[33] Motter A. E., Myers S. A., Anghel M., Nishikawa T., “Spontaneous synchrony in power-grid networks”, Nature Physics, 9:3 (2013), 191–197 | DOI
[34] Wang B., Suzuki H., Aihara K., “Enhancing synchronization stability in a multi-area power grid”, Scientific Reports, 6:1 (2016), 26596 | DOI
[35] Hong S., Chun Y., “Efficiency and stability in a model of wireless communication networks”, Social Choice and Welfare, 34:3 (2010), 441–454 | DOI | MR | Zbl
[36] González-Avella J. C., Cosenza M. G., San Miguel M., “Localized coherence in two interacting populations of social agents”, Physica A: Statistical Mechanics and its Applications, 399 (2014), 24–30 | DOI
[37] Bansal K., Garcia J. O., Tompson S. H., Verstynen T., Vettel J. M., Muldoon S. F., “Cognitive chimera states in human brain networks”, Science Advances, 5:4 (2019), eaau8535 | DOI
[38] Majhi S., Bera B. K., Ghosh D., Perc M., “Chimera states in neuronal networks: A review”, Physics of Life Reviews, 28 (2019), 100–121 | DOI
[39] Schöll E., “Partial synchronization patterns in brain networks”, Europhysics Letters, 136:1 (2022), 18001 | DOI
[40] Levy R., Hutchison W. D., Lozano A. M., Dostrovsky J. O., “High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor”, J. Neurosci., 20:20 (2000), 7766–7775 | DOI
[41] Rattenborg N. C., Amlaner C. J., Lima S. L., “Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep”, Neurosci. Biobehav. Rev., 24:8 (2000), 817–842 | DOI
[42] Funahashi S., Bruce C. J., Goldman-Rakic P. S., “Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex”, J. Neurophysiol, 65:6 (1991), 1464–1483 | DOI
[43] Swindale N. V., “A model for the formation of ocular dominance stripes”, Proc. R. Soc. Lond. B, 208:1171 (1980), 243–264 | DOI
[44] Andrzejak R. G., Rummel C., Mormann F., Schindler K., “All together now: Analogies between chimera state collapses and epileptic seizures”, Scientific Reports, 6:1 (2016), 23000 | DOI
[45] Malchow A.-K., Omelchenko I., Schöll E., Hövel P., “Robustness of chimera states in nonlocally coupled networks of nonidentical logistic maps”, Physical Review E, 98:1 (2018), 012217 | DOI | MR
[46] Bukh A. V., Slepnev A. V., Anishchenko V. S., Vadivasova T. E., “Stability and noise-induced transitions in an ensemble of nonlocally coupled chaotic maps”, Regular and Chaotic Dynamics, 23:3 (2018), 325–338 | DOI | MR | Zbl
[47] Rybalova E. V., Klyushina D. Y., Anishchenko V. S., Strelkova G. I., “Impact of noise on the amplitude chimera lifetime in an ensemble of nonlocally coupled chaotic maps”, Regular and Chaotic Dynamics, 24:4 (2019), 432–445 | DOI | MR | Zbl
[48] Rybalova E., Schöll E., Strelkova G., “Controlling chimera and solitary states by additive noise in networks of chaotic maps”, Journal of Difference Equations and Applications, 2022, 1–22 | DOI
[49] Rybalova E., Muni S., Strelkova G., “Transition from chimera/solitary states to traveling waves”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:3 (2023), 033104 | DOI | MR
[50] Nechaev V. A., Rybalova E. V., Strelkova G. I., “Vliyanie neodnorodnosti parametrov na suschestvovanie khimernykh struktur v koltse nelokalno svyazannykh otobrazhenii”, Izvestiya vuzov. PND, 29:6 (2021), 943–952 | DOI | MR
[51] Nikishina N. N., Rybalova E. V., Strelkova G. I., Vadivasova T. E., “Destruction of cluster structures in an ensemble of chaotic maps with noise-modulated nonlocal coupling”, Regular and Chaotic Dynamics, 27:2 (2022), 242–251 | DOI | MR | Zbl
[52] Omelchenko I., Provata A., Hizanidis J., Schöll E., Hövel P., “Robustness of chimera states for coupled FitzHugh-Nagumo oscillators”, Physical Review E, 91:2 (2015), 022917 | DOI | MR
[53] Semenova N., Zakharova A., Anishchenko V., Schöll E., “Coherence-resonance chimeras in a network of excitable elements”, Physical Review Letters, 117:1 (2016), 014102 | DOI
[54] Zakharova A., Loos S., Siebert J., Gjurchinovski A., Schöll E., “Chimera patterns: influence of time delay and noise”, IFAC-PapersOnLine, 48:18 (2015), 7–12 | DOI
[55] Loos S. A. M., Claussen J. C., Schöll E., Zakharova A., “Chimera patterns under the impact of noise”, Physical Review E, 93:1 (2016), 012209 | DOI
[56] Wu H., Dhamala M., “Dynamics of Kuramoto oscillators with time-delayed positive and negative couplings”, Physical Review E, 98:3 (2018), 032221 | DOI | MR
[57] Jaros P., Brezetsky S., Levchenko R., Dudkowski D., Kapitaniak T., Maistrenko Y., “Solitary states for coupled oscillators with inertia”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28:1 (2018), 011103 | DOI | MR | Zbl
[58] Berner R., Polanska A., Schöll E., Yanchuk S., “Solitary states in adaptive nonlocal oscillator networks”, The European Physical Journal Special Topics, 229:12–13 (2020), 2183–2203 | DOI
[59] Semenova N. I., Rybalova E. V., Strelkova G. I., Anishchenko V. S., ““Coherence–incoherence” transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors”, Regular and Chaotic Dynamics, 22:2 (2017), 148–162 | DOI | MR | Zbl
[60] Semenova N., Vadivasova T., Anishchenko V., “Mechanism of solitary state appearance in an ensemble of nonlocally coupled Lozi maps”, The European Physical Journal Special Topics, 227:10–11 (2018), 1173–1183 | DOI
[61] Schülen L., Ghosh S., Kachhvah A. D., Zakharova A., Jalan S., “Delay engineered solitary states in complex networks”, Chaos, Solitons Fractals, 128 (2019), 290–296 | DOI | MR | Zbl
[62] Mikhaylenko M., Ramlow L., Jalan S., Zakharova A., “Weak multiplexing in neural networks: Switching between chimera and solitary states”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:2 (2019), 023122 | DOI | MR | Zbl
[63] Rybalova E., Anishchenko V. S., Strelkova G. I., Zakharova A., “Solitary states and solitary state chimera in neural networks”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:7 (2019), 071106 | DOI | MR | Zbl
[64] Schülen L., Janzen D. A., Medeiros E. S., Zakharova A., “Solitary states in multiplex neural networks: Onset and vulnerability”, Chaos, Solitons Fractals, 145 (2021), 110670 | DOI | MR | Zbl
[65] Taher H., Olmi S., Schöll E., “Enhancing power grid synchronization and stability through time-delayed feedback control”, Physical Review E, 100:6 (2019), 062306 | DOI
[66] Hellmann F., Schultz P., Jaros P., Levchenko R., Kapitaniak T., Kurths J., Maistrenko Y., “Network-induced multistability through lossy coupling and exotic solitary states”, Nature Communications, 11:1 (2020), 592 | DOI
[67] Berner R., Yanchuk S., Schöll E., “What adaptive neuronal networks teach us about power grids”, Physical Review E, 103:4 (2021), 042315 | DOI | MR
[68] Kapitaniak T., Kuzma P., Wojewoda J., Czolczynski K., Maistrenko Y., “Imperfect chimera states for coupled pendula”, Scientific Reports, 4:1 (2014), 6379 | DOI
[69] Fried I., MacDonald K. A., Wilson C. L., “Single neuron activity in human hippocampus and amygdala during recognition of faces and objects”, Neuron, 18:5 (1997), 753–765 | DOI
[70] Kreiman G., Koch C., Fried I., “Category-specific visual responses of single neurons in the human medial temporal lobe”, Nature Neuroscience, 3:9 (2000), 946–953 | DOI
[71] Rose D., “Some reflections on (or by?) grandmother cells”, Perception, 25:8 (1996), 881–886 | DOI
[72] Quiroga R. Q., Reddy L., Kreiman G., Koch C., Fried I., “Invariant visual representation by single neurons in the human brain”, Nature, 435:7045 (2005), 1102–1107 | DOI
[73] Xin Y., Zhong L., Zhang Y., Zhou T., Pan J., Xu N.-L., “Sensory-to-category transformation via dynamic reorganization of ensemble structures in mouse auditory cortex”, Neuron, 103:5 (2019), 909–921 | DOI
[74] Franović I., Eydam S., Semenova N., Zakharova A., “Unbalanced clustering and solitary states in coupled excitable systems”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:1 (2022), 011104 | DOI
[75] Rybalova E., Strelkova G., “Response of solitary states to noise-modulated parameters in nonlocally coupled networks of Lozi maps”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:2 (2022), 021101 | DOI | MR
[76] Omelchenko I., Omel’chenko O. E., Hövel P., Schöll E., “When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states”, Physical Review Letters, 110:22 (2013), 224101 | DOI
[77] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1:6 (1961), 445–466 | DOI
[78] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proceedings of the IRE, 50:10 (1962), 2061–2070 | DOI