Influence of nonlinearity on the Bragg resonances in coupled magnon crystals
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 111-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose. The purpose of this paper is to investigate the effect of nonlinearity on formation mechanism and characteristics of Bragg resonances in vertically coupled magnon crystals with periodic groove system on the surface. In this paper a wave model is constructed, a nonlinear dispersion relation for surface magnetostatic waves in such a structure is obtained and the characteristics of each of the Bragg resonances are numerically studied with increasing input signal power. Methods. Theoretical methods of investigation of spin-wave excitations in a wide class of structures with ferromagnetic layers have been used. In particular, the following theoretical models have been used: coupled wave method, long-wave approximation. Results. This paper presents the results of a theoretical investigation of the effect of magnetic nonlinearity on Bragg resonances in a sandwich structure based on magnon crystals with periodic grooves on the surface separated by a dielectric layer. A mechanism for the formation of band gaps at the Bragg resonance frequencies in the presence of media nonlinearity has been revealed. It is shown that with increasing input power the frequency interval between the band gaps decreases. With increasing magnetization difference of magnon crystals, the effect of nonlinear convergence is more pronounced. Conclusion. The identified features extend the capabilities of sandwich structures based on magnon crystals for frequency selective signal processing by controlling the frequency selectivity, both via static coupling parameters, periodicity and layer magnetisation, and dynamically via the input signal power.
Keywords: ferromagnetic film, magnetostatic wave, magnon crystal, Bragg resonance, band gap
@article{IVP_2024_32_1_a8,
     author = {N. D. Lobanov and O. V. Matveev and M. A. Morozova},
     title = {Influence of nonlinearity on the {Bragg} resonances in coupled magnon crystals},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a8/}
}
TY  - JOUR
AU  - N. D. Lobanov
AU  - O. V. Matveev
AU  - M. A. Morozova
TI  - Influence of nonlinearity on the Bragg resonances in coupled magnon crystals
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 111
EP  - 120
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a8/
LA  - ru
ID  - IVP_2024_32_1_a8
ER  - 
%0 Journal Article
%A N. D. Lobanov
%A O. V. Matveev
%A M. A. Morozova
%T Influence of nonlinearity on the Bragg resonances in coupled magnon crystals
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 111-120
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a8/
%G ru
%F IVP_2024_32_1_a8
N. D. Lobanov; O. V. Matveev; M. A. Morozova. Influence of nonlinearity on the Bragg resonances in coupled magnon crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a8/

[1] Nikitov S. A., Safin A. R., Kalyabin D. V., Sadovnikov A. V., Beginin E. N., Logunov M. V., Morozova M. A., Odintsov S. A., Osokin S. A., Sharaevskaya A. Yu., Sharaevskii Yu. P., Kirilyuk A. I., “Dielektricheskaya magnonika – ot gigagertsev k teragertsam”, UFN, 190:10 (2020), 1009–1040 | DOI

[2] Barman A., Gubbiotti G., Ladak S., Adeyeye A. O., Krawczyk M., Gräfe J., Adelmann C., Cotofana S., Naeemi A., Vasyuchka V. I., Hillebrands B., Nikitov S. A., Yu H., Grundler D., Sadovnikov A. V., Grachev A. A., Sheshukova S. E., Duquesne J.-Y., Marangolo M., Csaba G., Porod W., Demidov V. E., Urazhdin S., Demokritov S. O., Albisetti E., Petti D., Bertacco R., Schultheiss H., Kruglyak V. V., Poimanov V. D., Sahoo S., Sinha J., Yang H., Münzenberg M., Moriyama T., Mizukami S., Landeros P., Gallardo R. A., Carlotti G., Kim J.-V., Stamps R. L., Camley R. E., Rana B., Otani Y., Yu W., Yu T., Bauer G. E. W., Back C., Uhrig G. S., Dobrovolskiy O. V., Budinska B., Qin H., van Dijken S., Chumak A. V., Khitun A., Nikonov D. E., Young I. A., Zingsem B. W., Winklhofer M., “The 2021 magnonics roadmap”, Journal of Physics: Condensed Matter, 33:41 (2021), 413001 | DOI

[3] Barman A., Sinha J., Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures, Springer, Cham, 2018, 156 pp. | DOI

[4] Krawczyk M., Grundler D., “Review and prospects of magnonic crystals and devices with reprogrammable band structure”, Journal of Physics: Condensed Matter, 26:12 (2014), 123202 | DOI

[5] Chumak A. V., Serga A. A., Hillebrands B., “Magnonic crystals for data processing”, Journal of Physics D: Applied Physics, 50:24 (2017), 244001 | DOI

[6] Brillouin L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2, Dover Publications, 1953, 255 pp. | Zbl

[7] Wigen P. E., Nonlinear Phenomena and Chaos in Magnetic Materials, World Scientific, Singapore, 1994, 260 pp. | DOI

[8] Lvov V. S., Nelineinye spinovye volny, Nauka, M., 1987, 272 pp.

[9] Lukomskii V. P., “Nelineinye magnitostaticheskie volny v ferromagnitnykh plastinakh”, Ukr. fiz. zhurn, 23:1 (1978), 134

[10] Wang Q., Kewenig M., Schneider M., Verba R., Kohl F., Heinz B., Geilen M., Mohseni M., Lägel B., Ciubotaru F., Adelmann C., Dubs C., Cotofana S. D., Dobrovolskiy O. V., Brächer T., Pirro P., Chumak A. V., “A magnonic directional coupler for integrated magnonic half-adders”, Nature Electronics, 3:12 (2020), 765–774 | DOI

[11] Morozova M. A., Matveev O. V., Romanenko D. V., Trukhanov A. V., Mednikov A. M., Sharaevskii Y. P., Nikitov S. A., “Nonlinear spin wave switches in layered structure based on magnonic crystals”, Journal of Magnetism and Magnetic Materials, 508 (2020), 166836 | DOI

[12] Ustinov A. B., Drozdovskii A. V., Kalinikos B. A., “Multifunctional nonlinear magnonic devices for microwave signal processing”, Applied Physics Letters, 96:14 (2010), 142513 | DOI

[13] Castera J. P., Hartemann P., “Adjustable magnetostatic surface-wave multistrip directional coupler”, Electronics Letters, 16:5 (1980), 195–196 | DOI

[14] Wang Q., Pirro P., Verba R., Slavin A., Hillebrands B., Chumak A. V., “Reconfigurable nanoscale spin-wave directional coupler”, Science Advances, 4:1 (2018), e1701517 | DOI

[15] Vogt K., Fradin F. Y., Pearson J. E., Sebastian T., Bader S. D., Hillebrands B., Hoffmann A., Schultheiss H., “Realization of a spin-wave multiplexer”, Nature Communications, 5:1 (2014), 3727 | DOI

[16] Klingler S., Pirro P., Brächer T., Leven B., Hillebrands B., Chumak A. V., “Spin-wave logic devices based on isotropic forward volume magnetostatic waves”, Applied Physics Letters, 106:21 (2015), 212406 | DOI

[17] Sasaki H., Mikoshiba N., “Directional coupling of magnetostatic surface waves in a layered structure of YIG films”, Journal of Applied Physics, 52:5 (1981), 3546–3552 | DOI

[18] An K., Bhat V. S., Mruczkiewicz M., Dubs C., Grundler D., “Optimization of spin-wave propagation with enhanced group velocities by exchange-coupled ferrimagnet-ferromagnet bilayers”, Physical Review Applied, 11:3 (2019), 034065 | DOI

[19] Morozova M. A., Romanenko D. V., Matveev O. V., Grishin S. V., Sharaevskii Y. P., Nikitov S. A., “Suppression of periodic spatial power transfer in a layered structure based on ferromagnetic films”, Journal of Magnetism and Magnetic Materials, 466 (2018), 119–124 | DOI

[20] Morozova M. A., Sharaevskaya A. Y., Sadovnikov A. V., Grishin S. V., Romanenko D. V., Beginin E. N., Sharaevskii Y. P., Nikitov S. A., “Band gap formation and control in coupled periodic ferromagnetic structures”, Journal of Applied Physics, 120:22 (2016), 223901 | DOI

[21] Morozova M. A., Grishin S. V., Sadovnikov A. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A., “Tunable bandgaps in layered structure magnonic crystal–ferroelectric”, IEEE Transactions on Magnetics, 51:11 (2015), 2802504 | DOI

[22] Morozova M. A., Lobanov N. D., Matveev O. V., Nikitov S. A., “Mekhanizm formirovaniya zapreschennykh zon spinovykh voln v svyazannykh magnonnykh kristallakh”, Pisma v ZhETF, 115:12 (2022), 793–800 | DOI

[23] Louisell W. H., Coupled Mode and Parametric Electronics, Wiley, New York, 1960, 268 pp.

[24] Vashkovskii A. V., Stalmakhov V. S., Sharaevskii Yu. P., Magnitostaticheskie volny v elektronike sverkhvysokikh chastot, Izdatelstvo Saratovskogo universiteta, Saratov, 1993, 312 pp.