Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_1_a7, author = {E. V. Navrotskaya and A. V. Kurbako and V. I. Ponomarenko and M. D. Prokhorov}, title = {Synchronisation of the ensemble of nonidentical {FitzHugh-Nagumo} oscillators with memristive couplings}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {96--110}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a7/} }
TY - JOUR AU - E. V. Navrotskaya AU - A. V. Kurbako AU - V. I. Ponomarenko AU - M. D. Prokhorov TI - Synchronisation of the ensemble of nonidentical FitzHugh-Nagumo oscillators with memristive couplings JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 96 EP - 110 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a7/ LA - ru ID - IVP_2024_32_1_a7 ER -
%0 Journal Article %A E. V. Navrotskaya %A A. V. Kurbako %A V. I. Ponomarenko %A M. D. Prokhorov %T Synchronisation of the ensemble of nonidentical FitzHugh-Nagumo oscillators with memristive couplings %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 96-110 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a7/ %G ru %F IVP_2024_32_1_a7
E. V. Navrotskaya; A. V. Kurbako; V. I. Ponomarenko; M. D. Prokhorov. Synchronisation of the ensemble of nonidentical FitzHugh-Nagumo oscillators with memristive couplings. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 96-110. http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a7/
[1] Yamazaki K., Vo-Ho V.-K., Bulsara D., Le N., “Spiking neural networks and their applications: A review”, Brain Sciences, 12:7 (2022), 863 | DOI
[2] Quiroga R. Q., Panzeri S., Principles of Neural Coding, CRC Press, Boca Raton, 2013, 664 pp.
[3] Kasabov N., Evolving Connectionist Systems: The Knowledge Engineering Approach, Springer, London, 2007, 451 pp. | DOI | Zbl
[4] Lobov S., Mironov V., Kastalskiy I., Kazantsev V., “A spiking neural network in sEMG fea-ture extraction”, Sensors, 15:11 (2015), 27894–27904 | DOI
[5] Lobov S.A., Chernyshov A.V., Krilova N.P., Shamshin M.O., Kazantsev V.B., “Competitive learning in a spiking neural network: Towards an intelligent pattern classifier”, Sensors, 20:2 (2000), 500 | DOI
[6] Virgilio G. C. D., Sossa A. J. H., Antelis J. M., Falcón L. E., “Spiking Neural Networks applied to the classification of motor tasks in EEG signals”, Neural Netw, 122 (2020), 130–143 | DOI
[7] Andreev A. V., Ivanchenko M. V., Pisarchik A. N., Hramov A. E., “Stimulus classification using chimera-like states in a spiking neural network”, Chaos, Solitons Fractals, 139 (2020), 110061 | DOI | MR | Zbl
[8] Navrotskaya E. V., Kulminskii D. D., Ponomarenko V. I., Prokhorov M. D., “Otsenka parametrov impulsnogo vozdeistviya s pomoschyu seti neiropodobnykh ostsillyatorov”, Izvestiya vuzov. PND, 30:4 (2022), 495–512 | DOI | MR
[9] Hossain M. S., Muhammad G., “Emotion recognition using deep learning approach from audio–visual emotional big data”, Information Fusion, 49 (2019), 69–78 | DOI
[10] Yu D., Deng L., Automatic Speech Recognition: A Deep Learning Approach, Springer, London, 2015, 321 pp. | DOI | Zbl
[11] Bing Z., Meschede C., Röhrbein F., Huang K., Knoll A. C., “A survey of robotics control based on learning-inspired spiking neural networks”, Frontiers in Neurorobotics, 12 (2018), 35 | DOI
[12] Wang X., Hou Z.-G., Lv F., Tan M., Wang Y., “Mobile robots' modular navigation controller using spiking neural networks”, Neurocomputing, 134 (2014), 230–238 | DOI
[13] Chou T.-S., Bucci L. D., Krichmar J. L., “Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex”, Frontiers in Neurorobotics, 9 (2015), 6 | DOI
[14] Lobov S. A., Mikhaylov A. N., Shamshin M., Makarov V. A., Kazantsev V. B., “Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot”, Frontiers in Neuroscience, 14 (2020), 88 | DOI
[15] Yi Z., Lian J., Liu Q., Zhu H., Liang D., Liu J., “Learning rules in spiking neural networks: A survey”, Neurocomputing, 531 (2023), 163–179 | DOI
[16] Dmitrichev A. S., Kasatkin D. V., Klinshov V. V., Kirillov S. Yu., Maslennikov O. V., Schapin D. S., Nekorkin V. I., “Nelineinye dinamicheskie modeli neironov: obzor”, Izvestiya vuzov. PND, 26:4 (2018) | DOI
[17] Shepelev I. A., Slepnev A. V., Vadivasova T. E., “Different synchronization characteristics of distinct types of traveling waves in a model of active medium with periodic boundary conditions”, Communications in Nonlinear Science and Numerical Simulation, 38 (2016), 206–217 | DOI | MR | Zbl
[18] Shepelev I. A., Vadivasova T. E., Bukh A. V., Strelkova G. I., Anishchenko V. S., “New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction”, Physics Letters A, 381:16 (2017), 1398–1404 | DOI | MR
[19] Shepelev I. A., Shamshin D. V., Strelkova G. I., Vadivasova T. E., “Bifurcations of spatiotemporal structures in a medium of FitzHugh–Nagumo neurons with diffusive coupling”, Chaos, Solitons Fractals, 104 (2017), 153–160 | DOI | MR | Zbl
[20] Plotnikov S. A., Fradkov A. L., “On synchronization in heterogeneous FitzHugh–Nagumo networks”, Chaos, Solitons Fractals, 121 (2019), 85–91 | DOI | MR | Zbl
[21] Kulminskiy D. D., Ponomarenko V. I., Prokhorov M. D., Hramov A. E., “Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators”, Nonlinear Dynamics, 98:1 (2019), 735–748 | DOI
[22] Plotnikov S. A., Lehnert J., Fradkov A. L., Schöll E., “Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh–Nagumo nodes”, Int. J. Bifurc. Chaos, 26:4 (2016), 1650058 | DOI | Zbl
[23] Kurbako A. V., Ponomarenko V. I., Prokhorov M. D., “Adaptivnoe upravlenie nesinkhronnymi kolebaniyami v seti identichnykh elektronnykh neiropodobnykh generatorov”, Pisma v ZhTF, 48:19 (2022), 43–46 | DOI
[24] Korneev I. A., Slepnev A. V., Semenov V. V., Vadivasova T. E., “Volnovye protsessy v koltse memristivno svyazannykh avtogeneratorov”, Izvestiya vuzov. PND, 28:3 (2020), 324–340 | DOI | MR
[25] Wang C., Lv M., Alsaedi A., Ma J., “Synchronization stability and pattern selection in a memristive neuronal network”, Chaos, 27:11 (2017), 113108 | DOI | MR
[26] Xu F., Zhang J., Jin M., Huang S., Fang T., “Chimera states and synchronization behavior in multilayer memristive neural networks”, Nonlinear Dynamics, 94:2 (2018), 775–783 | DOI
[27] Usha K., Subha P. A., “Collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with electrical, chemical and field couplings”, Nonlinear Dynamics, 96:3 (2019), 2115–2124 | DOI | MR | Zbl
[28] Bao H., Zhang Y., Liu W., Bao B., “Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera”, Nonlinear Dynamics, 100:1 (2020), 937–950 | DOI | Zbl
[29] Korneev I. A., Semenov V. V., Slepnev A. V., Vadivasova T. E., “The impact of memristive coupling initial states on travelling waves in an ensemble of the FitzHugh–Nagumo oscillators”, Chaos, Solitons Fractals, 147 (2021), 110923 | DOI | Zbl
[30] Xu Y., Jia Y., Ma J., Alsaedi A., Ahmad B., “Synchronization between neurons coupled by memristor”, Chaos, Solitons Fractals, 104 (2017), 435–442 | DOI
[31] Gerasimova S. A., Mikhailov A. N., Belov A. I., Korolev D. S., Gorshkov O. N., Kazantsev V. B., “Imitatsiya sinapticheskoi svyazi neironopodobnykh generatorov s pomoschyu memristivnogo ustroistva”, ZhTF, 87:8 (2017), 1248–1254 | DOI
[32] Chua L., “Memristor-The missing circuit element”, IEEE Transactions on Circuit Theory, 18:5 (1971), 507–519 | DOI
[33] Chua L. O., Kang S. M., “Memristive devices and systems”, Proceedings of the IEEE, 64:2 (1976), 209–223 | DOI
[34] Strukov D. B., Snider G. S., Stewart D. R., Williams R. S., “The missing memristor found”, Nature, 453:7191 (2008), 80–83 | DOI
[35] Patterson G. A., Fierens P. I., García A. A., Grosz D. F., “Numerical and experimental study of stochastic resistive switching”, Phys. Rev. E, 87:1 (2013), 012128 | DOI