Modeling of the Hodgkin-Huxley neural oscillators dynamics using an artificial neural network
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 72-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this study - to represent a detailed description of the procedure for creating and training a neural network mapping on the example of the dynamics modeling of a neural oscillator of the Hodgkin-Huxley type; to show that the neural network mappings trained for single oscillators can be used as elements of a coupled system that simulate the behavior of coupled oscillators. Methods. Numerical method is used for solving stiff systems of ordinary differential equations. Also a procedure for training neural networks based on the method of back propagation of error is employed together with the Adam optimization algorithm, that is a modified version of the gradient descent supplied with an automatic step adjustment. Results. It is shown that the neural network mappings built according to the described procedure are able to reproduce the dynamics of single neural oscillators. Moreover, without additional training, these mappings can be used as elements of a coupled system for the dynamics modeling of coupled neural oscillator systems. Conclusion. The described neural network mapping can be considered as a new universal framework for complex dynamics modeling. In contrast to models based on series expansion (power, trigonometric), neural network mapping does not require truncating of the series. Consequently, it allows modeling processes with arbitrary order of nonlinearity, hence there are reasons to believe that in some aspects it will be more effective. The approach developed in this paper based on the neural network mapping can be considered as a sort of an alternative to the traditional numerical methods of modeling of dynamics. What makes this approach topical is the current rapid development of technologies for creating fast computing equipment that supports neural network training and operation.
Keywords: neural network mapping, neural network, dataset, neural network learning, neuromorphic dynamics, numerical simulation
@article{IVP_2024_32_1_a6,
     author = {P. V. Kuptsov and N. V. Stankevich},
     title = {Modeling of the {Hodgkin-Huxley} neural oscillators dynamics using an artificial neural network},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {72--95},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a6/}
}
TY  - JOUR
AU  - P. V. Kuptsov
AU  - N. V. Stankevich
TI  - Modeling of the Hodgkin-Huxley neural oscillators dynamics using an artificial neural network
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 72
EP  - 95
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a6/
LA  - ru
ID  - IVP_2024_32_1_a6
ER  - 
%0 Journal Article
%A P. V. Kuptsov
%A N. V. Stankevich
%T Modeling of the Hodgkin-Huxley neural oscillators dynamics using an artificial neural network
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 72-95
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a6/
%G ru
%F IVP_2024_32_1_a6
P. V. Kuptsov; N. V. Stankevich. Modeling of the Hodgkin-Huxley neural oscillators dynamics using an artificial neural network. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 72-95. http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a6/

[1] Levin E., Gewirtzman R., Inbar G. F., “Neural network architecture for adaptive system modeling and control”, Neural Networks, 4:2 (1991), 185–191 | DOI

[2] Grieger B., Latif M., “Reconstruction of the {E}l {N}iño attractor with neural networks”, Climate Dynamics, 10:6–7 (1994), 267–276 | DOI

[3] Zimmermann H. G., Neuneier R., “Combining state space reconstruction and forecasting by neural networks”, Datamining und Computational Finance, v. 174, Wirtschaftswissenschaftliche Beiträge, eds. Bol G., Nakhaeizadeh G., Vollmer K. H., Physica, Heidelberg, 2000, 259–267 | DOI

[4] Gilpin W., Huang Y., Forger D. B., “Learning dynamics from large biological data sets: Machine learning meets systems biology”, Current Opinion in Systems Biology, 22 (2020), 1–7 | DOI

[5] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyaminepreryvnykh funktsii menshego chisla peremennykh”, DAN SSSR, 108:2 (1956), 179–182 | Zbl

[6] Arnold V. I., “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | DOI | Zbl

[7] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114:5 (1957), 953–956 | DOI | Zbl

[8] Cybenko G., “Approximation by superpositions of a sigmoidal function”, Mathematics of Control, Signals and Systems, 2:4 (1989), 303–314 | DOI | MR | Zbl

[9] Gorban A. N., “Obobschennaya approksimatsionnaya teorema i tochnoe predstavlenie mnogochlenov ot neskolkikh peremennykh superpozitsiyami mnogochlenov ot odnogo peremennogo”, Izvestiya vuzov. Matematika, 1998, no. 5(432), 6–9 | Zbl

[10] Khaikin S., Neironnye seti: polnyi kurs, 2, Izdatelskii dom «Vilyams», M., 2006, 1104 pp.

[11] Nikolenko S., Kadurin A., Arkhangelskaya E., Glubokoe obuchenie, Piter, SPb., 2018, 480 pp.

[12] Cook S., CUDA Programming: A Developer's Guide to Parallel Computing with GPUs, Morgan Kaufmann, 2012, 592 pp.

[13] Jouppi N. P., Young C., Patil N., Patterson D., Agrawal G., Bajwa R., Bates S., Bhatia S., Boden N., Borchers A., Boyle R., Cantin P.-L., Chao C., Clark C., Coriell J., Daley M., Dau M., Dean J., Gelb B., Ghaemmaghami T. V., Gottipati R., Gulland W., Hagmann R., Ho C. R., Hogberg D., Hu J., Hundt R., Hurt D., Ibarz J., Jaffey A., Jaworski A., Kaplan A., Khaitan H., Killebrew D., Koch A., Kumar N., Lacy S., Laudon J., Law J., Le D., Leary C., Liu Z., Lucke K., Lundin A., MacKean G., Maggiore A., Mahony M., Miller K., Nagarajan R., Narayanaswami R., Ni R., Nix K., Norrie T., Omernick M., Penukonda N., Phelps A., Ross J., Ross M., Salek A., Samadiani E., Severn C., Sizikov G., Snelham M., Souter J., Steinberg D., Swing A., Tan M., Thorson G., Tian B., Toma H., Tuttle E., Vasudevan V., Walter R., Wang W., Wilcox E., Yoon D. H., “In-datacenter performance analysis of a Tensor Processing Unit”, ACM SIGARCH Computer Architecture News, 45:2 (2017), 1–12 | DOI

[14] Welser J., Pitera J. W., Goldberg C., “Future computing hardware for AI”, 2018 IEEE International Electron Devices Meeting, IEDM (1-5 December 2018, San Francisco, CA, USA), IEEE, New York, 2018, 131–136 | DOI

[15] Karras K., Pallis E., Mastorakis G., Nikoloudakis Y., Batalla J. M., Mavromoustakis C. X., Markakis E., “A hardware acceleration platform for AI-based inference at the edge”, Circuits, Systems, and Signal Processing, 39:2 (2020), 1059–1070 | DOI

[16] Kuptsov P. V., Kuptsova A. V., Stankevich N. V., “Artificial neural network as a universal model of nonlinear dynamical systems”, Russian Journal of Nonlinear Dynamics, 17:1 (2021), 5–21 | DOI | MR

[17] Kuptsov P. V., Stankevich N. V., Bagautdinova E. R., “Discovering dynamical features of Hodgkin–Huxley-type model of physiological neuron using artificial neural network”, Chaos, Solitons Fractals, 167 (2023), 113027 | DOI

[18] Sherman A., Rinzel J., Keizer J., “Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing”, Biophysical Journal, 54:3 (1988), 411–425 | DOI

[19] Stankevich N., Mosekilde E., “Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model”, Chaos, 27:12 (2017), 123101 | DOI | MR

[20] Malashchenko T., Shilnikov A., Cymbalyuk G., “Six types of multistability in a neuronal model based on slow calcium current”, PLoS ONE, 6:7 (2011), e21782 | DOI

[21] Rozhnova M. A., Pankratova E. V., Stasenko S. V., Kazantsev V. B., “Bifurcation analysis of multistability and oscillation emergence in a model of brain extracellular matrix”, Chaos, Solitons Fractals, 151 (2021), 111253 | DOI | MR

[22] Pankratova E. V., Sinitsina M. S., Gordleeva S., Kazantsev V. B., “Bistability and chaos emergence in spontaneous dynamics of astrocytic calcium concentration”, Mathematics, 10:8 (2022), 1337 | DOI

[23] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical Recipes: The Art of Scientific Computing, 3, Cambridge University Press, New York, 2007, 1256 pp. | Zbl

[24] Shilnikov A., Cymbalyuk G., “Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe”, Phys. Rev. Lett., 94:4 (2005), 048101 | DOI

[25] Marković D., Mizrahi A., Querlioz D., Grollier J., “Physics for neuromorphic computing”, Nature Reviews Physics, 2 (2020), 499–510 | DOI

[26] Stankevich N., Koseska A., “Cooperative maintenance of cellular identity in systems with intercellular communication defects”, Chaos, 30:1 (2020), 013144 | DOI | MR | Zbl

[27] Kingma D. P., Ba J., Adam: A method for stochastic optimization, arXiv:1412.6980. arXiv Preprint, 2014 | DOI