Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_1_a2, author = {L. V. Turukina}, title = {Parametric interaction of modes in the presence of quadratic or cubic nonlinearity}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {11--30}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a2/} }
TY - JOUR AU - L. V. Turukina TI - Parametric interaction of modes in the presence of quadratic or cubic nonlinearity JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 11 EP - 30 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a2/ LA - ru ID - IVP_2024_32_1_a2 ER -
L. V. Turukina. Parametric interaction of modes in the presence of quadratic or cubic nonlinearity. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 11-30. http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a2/
[1] Demidov V. E., Kovshikov N. G., “Mekhanizm vozniknoveniya i stokhastizatsii avtomodulyatsii intensivnykh spinovykh voln”, Zhurnal tekhnicheskoi fiziki, 69:8 (1999), 100–103
[2] Romanenko D. V., “Generatsiya khaoticheskoi posledovatelnosti SVCh-impulsov v avtokolebatelnoi sisteme s ferromagnitnoi plenkoi”, Izvestiya vuzov. PND, 20:1 (2012), 67–74 | DOI | Zbl
[3] Wersinger J.-M., Finn J. M., Ott E., “Bifurcation and ’’strange’’ behavior in instability saturation by nonlinear three-wave mode coupling”, The Physics of Fluids, 23:6 (1980), 1142–1154 | DOI | MR | Zbl
[4] Savage C. M., Walls D. F., “Optical chaos in second-harmonic generation”, Optica Acta: International Journal of Optics, 30:5 (1983), 557–561 | DOI
[5] Lythe G. D., Proctor M. R. E., “Noise and slow-fast dynamics in a three-wave resonance problem”, Physical Review E, 47:5 (1993), 3122–3127 | DOI
[6] Kuznetsov C. P., “Parametricheskii generator khaosa na varaktornom diode s raspadnym mekhanizmom ogranicheniya neustoichivosti”, Zhurnal tekhnicheskoi fiziki, 86:3 (2016), 118–127
[7] Pikovskii A. S., Rabinovich M. I., Trakhtengerts V. Yu., “Vozniknovenie stokhastichnosti pri raspadnom ogranichenii parametricheskoi neustoichivosti”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 74:4 (1978), 1366–1374
[8] Vyshkind S. Ya., Rabinovich M. I., “Mekhanizm stokhastizatsii faz i struktura volnovoi turbulentnosti v dissipativnykh sredakh”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 71:2 (1976), 557–571
[9] Rabinovich M. I., Fabrikant A. L., “Stokhasticheskaya avtomodulyatsiya voln v neravnovesnykh sredakh”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 77:2 (1979), 617–629
[10] Kuznetsov S. P., Tyuryukina L. V., “Slozhnaya dinamika i khaos v elektronnom avtogeneratore s nasyscheniem, obespechivaemym parametricheskim raspadom”, Izvestiya vuzov. PND, 26:1 (2018), 33–47 | DOI | MR
[11] Danca M.-F., Chen G., “Bifurcation and chaos in a complex model of dissipative medium”, International Journal of Bifurcation and Chaos, 14:10 (2004), 3409–3447 | DOI | MR | Zbl
[12] Danca M.-F., Feckan M., Kuznetsov N., Chen G., “Looking more closely at the Rabinovich–Fabrikant system”, International Journal of Bifurcation and Chaos, 26:2 (2016), 1650038 | DOI | MR | Zbl
[13] Liu Y., Yang Q., Pang G., “A hyperchaotic system from the Rabinovich system”, Journal of Computational and Applied Mathematics, 234:1 (2010), 101–113 | DOI | MR | Zbl
[14] Agrawal S. K., Srivastava M., Das S., “Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems”, Nonlinear Dynamics, 69:4 (2012), 2277–2288 | DOI | MR
[15] Srivastava M., Agrawal S. K., Vishal K., Das S., “Chaos control of fractional order Rabinovich–Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich–Fabrikant system”, Applied Mathematical Modelling, 38:13 (2014), 3361–3372 | DOI | MR | Zbl
[16] Danca M.-F., “Hidden transient chaotic attractors of Rabinovich–Fabrikant system”, Nonlinear Dynamics, 86:2 (2016), 1263–1270 | DOI | MR
[17] Danca M.-F., Kuznetsov N., Chen G., “Unusual dynamics and hidden attractors of the Rabinovich–\linebreak Fabrikant system”, Nonlinear Dynamics, 88:1 (2017), 791–805 | DOI | MR
[18] Kuznetsov A. P., Kuznetsov S. P., Tyuryukina L. V., “Slozhnaya dinamika i khaos v modelnoi sisteme Rabinovicha–Fabrikanta”, Izvestiya Saratovskogo universiteta Novaya seriya Seriya Fizika, 19:1 (2019), 4–18 | DOI | MR
[19] Kuznetsov S. P., Tyuryukina L. V., “Obobschennaya sistema Rabinovicha–Fabrikanta: uravneniya i dinamika”, Izvestiya vuzov. PND, 30:1 (2022), 7–29 | DOI
[20] Tyuryukina L. V., “Dinamika sistemy Rabinovicha–Fabrikanta i ee obobschennoi modeli v sluchae otritsatelnykh znachenii parametrov, imeyuschikh smysl koeffitsientov dissipatsii”, Izvestiya vuzov. PND, 30:6 (2022), 685–701 | DOI
[21] Hocking L. M., Stewartson K., “On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance”, Proc. R. Soc. Lond. A, 326:1566 (1972), 289–313 | DOI | Zbl
[22] Kuramoto Y., Yamada T., “Turbulent state in chemical reactions”, Progress of Theoretical Physics, 56:2 (1976), 679–681 | DOI | MR
[23] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya kvaziperiodicheskikh kolebanii svyazannykh fazovykh ostsillyatorov”, Pisma v ZhTF, 36:10 (2010), 73–80
[24] Pazó D., Sánchez E., Matías M. A., “Transition to high-dimensional chaos through quasiperiodic motion”, International Journal of Bifurcation and Chaos, 11:10 (2001), 2683–2688 | DOI
[25] Kuznetsov A. P., Sataev I. R., Turukina L. V., “Regional structure of two- and three-frequency regimes in a model of four phase oscillators”, International Journal of Bifurcation and Chaos, 32:3 (2022), 2230008 | DOI | Zbl
[26] Kuznetsov C. P., Dinamicheskii khaos, Fizmatlit, M., 2006, 356 pp.