Parametric interaction of modes in the presence of quadratic or cubic nonlinearity
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 11-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is a study of the dynamics of the systems of ordinary differential equations of the second order, which is obtained using the Lagrange formalism. These systems describe the parametric interaction of oscillators (modes) in the presence of a general quadratic or cubic nonlinearity. Also, we compare the dynamics of the systems of ordinary differential equations of the second order and dynamics of the Vyshkind-Rabinovich and Rabinovich-Fabrikant models in order to determine the possibilities of the latter models when modeling coupled oscillators of the above type. Methods. The study is based on the numerical solution using the methods of the theory of the obtained analytically differential equations. Results. For both systems of second-order differential equations, is was presented a chart of in the parameter plane, a graphs of Lyapunov exponents at the value of the parameter that specifies the dissipation of oscillators, a time dependences of the generalized coordinates of oscillators and its amplitudes, portraits of attractors, a projection of the attractors on a phase planes of oscillators. A comparison with the dynamics of the Vyshkind-Rabinovich and Rabinovich-Fabrikant models is carried out. These models are three-dimensional real approximations of the above systems obtained by the method of slowly varying amplitudes. Conclusion. The study of the constructed systems showed that in the parameter space there are regions corresponding to both various regular regimes, such as the equilibrium position, limit cycle, two-frequency tori, and chaotic regimes. For both systems, it was shown that the transition to chaos occurs as a result of a sequence of period doubling bifurcations of the tori. In addition, a comparison of the dynamics of the constructed systems with the dynamics of the Vyshkind-Rabinovich and Rabinovich-Fabrikant models allows us to assert that if the Vyshkind-Rabinovich model predicts the dynamics of the corresponding initial system well enough, then the Rabinovich-Fabrikant model does not have such a property.
Keywords: parametric interaction of the oscillators, chaotic attractors, Lagrange formalism, Lyapunov exponents
@article{IVP_2024_32_1_a2,
     author = {L. V. Turukina},
     title = {Parametric interaction of modes in the presence of quadratic or cubic nonlinearity},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {11--30},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a2/}
}
TY  - JOUR
AU  - L. V. Turukina
TI  - Parametric interaction of modes in the presence of quadratic or cubic nonlinearity
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 11
EP  - 30
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a2/
LA  - ru
ID  - IVP_2024_32_1_a2
ER  - 
%0 Journal Article
%A L. V. Turukina
%T Parametric interaction of modes in the presence of quadratic or cubic nonlinearity
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 11-30
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a2/
%G ru
%F IVP_2024_32_1_a2
L. V. Turukina. Parametric interaction of modes in the presence of quadratic or cubic nonlinearity. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 11-30. http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a2/

[1] Demidov V. E., Kovshikov N. G., “Mekhanizm vozniknoveniya i stokhastizatsii avtomodulyatsii intensivnykh spinovykh voln”, Zhurnal tekhnicheskoi fiziki, 69:8 (1999), 100–103

[2] Romanenko D. V., “Generatsiya khaoticheskoi posledovatelnosti SVCh-impulsov v avtokolebatelnoi sisteme s ferromagnitnoi plenkoi”, Izvestiya vuzov. PND, 20:1 (2012), 67–74 | DOI | Zbl

[3] Wersinger J.-M., Finn J. M., Ott E., “Bifurcation and ’’strange’’ behavior in instability saturation by nonlinear three-wave mode coupling”, The Physics of Fluids, 23:6 (1980), 1142–1154 | DOI | MR | Zbl

[4] Savage C. M., Walls D. F., “Optical chaos in second-harmonic generation”, Optica Acta: International Journal of Optics, 30:5 (1983), 557–561 | DOI

[5] Lythe G. D., Proctor M. R. E., “Noise and slow-fast dynamics in a three-wave resonance problem”, Physical Review E, 47:5 (1993), 3122–3127 | DOI

[6] Kuznetsov C. P., “Parametricheskii generator khaosa na varaktornom diode s raspadnym mekhanizmom ogranicheniya neustoichivosti”, Zhurnal tekhnicheskoi fiziki, 86:3 (2016), 118–127

[7] Pikovskii A. S., Rabinovich M. I., Trakhtengerts V. Yu., “Vozniknovenie stokhastichnosti pri raspadnom ogranichenii parametricheskoi neustoichivosti”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 74:4 (1978), 1366–1374

[8] Vyshkind S. Ya., Rabinovich M. I., “Mekhanizm stokhastizatsii faz i struktura volnovoi turbulentnosti v dissipativnykh sredakh”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 71:2 (1976), 557–571

[9] Rabinovich M. I., Fabrikant A. L., “Stokhasticheskaya avtomodulyatsiya voln v neravnovesnykh sredakh”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 77:2 (1979), 617–629

[10] Kuznetsov S. P., Tyuryukina L. V., “Slozhnaya dinamika i khaos v elektronnom avtogeneratore s nasyscheniem, obespechivaemym parametricheskim raspadom”, Izvestiya vuzov. PND, 26:1 (2018), 33–47 | DOI | MR

[11] Danca M.-F., Chen G., “Bifurcation and chaos in a complex model of dissipative medium”, International Journal of Bifurcation and Chaos, 14:10 (2004), 3409–3447 | DOI | MR | Zbl

[12] Danca M.-F., Feckan M., Kuznetsov N., Chen G., “Looking more closely at the Rabinovich–Fabrikant system”, International Journal of Bifurcation and Chaos, 26:2 (2016), 1650038 | DOI | MR | Zbl

[13] Liu Y., Yang Q., Pang G., “A hyperchaotic system from the Rabinovich system”, Journal of Computational and Applied Mathematics, 234:1 (2010), 101–113 | DOI | MR | Zbl

[14] Agrawal S. K., Srivastava M., Das S., “Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems”, Nonlinear Dynamics, 69:4 (2012), 2277–2288 | DOI | MR

[15] Srivastava M., Agrawal S. K., Vishal K., Das S., “Chaos control of fractional order Rabinovich–Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich–Fabrikant system”, Applied Mathematical Modelling, 38:13 (2014), 3361–3372 | DOI | MR | Zbl

[16] Danca M.-F., “Hidden transient chaotic attractors of Rabinovich–Fabrikant system”, Nonlinear Dynamics, 86:2 (2016), 1263–1270 | DOI | MR

[17] Danca M.-F., Kuznetsov N., Chen G., “Unusual dynamics and hidden attractors of the Rabinovich–\linebreak Fabrikant system”, Nonlinear Dynamics, 88:1 (2017), 791–805 | DOI | MR

[18] Kuznetsov A. P., Kuznetsov S. P., Tyuryukina L. V., “Slozhnaya dinamika i khaos v modelnoi sisteme Rabinovicha–Fabrikanta”, Izvestiya Saratovskogo universiteta Novaya seriya Seriya Fizika, 19:1 (2019), 4–18 | DOI | MR

[19] Kuznetsov S. P., Tyuryukina L. V., “Obobschennaya sistema Rabinovicha–Fabrikanta: uravneniya i dinamika”, Izvestiya vuzov. PND, 30:1 (2022), 7–29 | DOI

[20] Tyuryukina L. V., “Dinamika sistemy Rabinovicha–Fabrikanta i ee obobschennoi modeli v sluchae otritsatelnykh znachenii parametrov, imeyuschikh smysl koeffitsientov dissipatsii”, Izvestiya vuzov. PND, 30:6 (2022), 685–701 | DOI

[21] Hocking L. M., Stewartson K., “On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance”, Proc. R. Soc. Lond. A, 326:1566 (1972), 289–313 | DOI | Zbl

[22] Kuramoto Y., Yamada T., “Turbulent state in chemical reactions”, Progress of Theoretical Physics, 56:2 (1976), 679–681 | DOI | MR

[23] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Sinkhronizatsiya kvaziperiodicheskikh kolebanii svyazannykh fazovykh ostsillyatorov”, Pisma v ZhTF, 36:10 (2010), 73–80

[24] Pazó D., Sánchez E., Matías M. A., “Transition to high-dimensional chaos through quasiperiodic motion”, International Journal of Bifurcation and Chaos, 11:10 (2001), 2683–2688 | DOI

[25] Kuznetsov A. P., Sataev I. R., Turukina L. V., “Regional structure of two- and three-frequency regimes in a model of four phase oscillators”, International Journal of Bifurcation and Chaos, 32:3 (2022), 2230008 | DOI | Zbl

[26] Kuznetsov C. P., Dinamicheskii khaos, Fizmatlit, M., 2006, 356 pp.