Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_6_a6, author = {S. Yu. Kirillov and A. A. Zlobin and V. V. Klinshov}, title = {Collective dynamics of a neural network of excitable and inhibitory populations: oscillations, tristability, chaos}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {757--775}, publisher = {mathdoc}, volume = {31}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a6/} }
TY - JOUR AU - S. Yu. Kirillov AU - A. A. Zlobin AU - V. V. Klinshov TI - Collective dynamics of a neural network of excitable and inhibitory populations: oscillations, tristability, chaos JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 757 EP - 775 VL - 31 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a6/ LA - ru ID - IVP_2023_31_6_a6 ER -
%0 Journal Article %A S. Yu. Kirillov %A A. A. Zlobin %A V. V. Klinshov %T Collective dynamics of a neural network of excitable and inhibitory populations: oscillations, tristability, chaos %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 757-775 %V 31 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a6/ %G ru %F IVP_2023_31_6_a6
S. Yu. Kirillov; A. A. Zlobin; V. V. Klinshov. Collective dynamics of a neural network of excitable and inhibitory populations: oscillations, tristability, chaos. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 757-775. http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a6/
[1] Deco G., Jirsa V. K., Robinson P. A., Breakspear M., Friston K., “The dynamic brain: From spiking neurons to neural masses and cortical fields”, PLoS Comput. Biol., 4:8 (2008), e1000092 | DOI
[2] Schwalger T., Deger M., Gerstner W., “Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size”, PLoS Comput. Biol., 13:4 (2017), e1005507 | DOI
[3] Coombes S., Byrne Á., “Next generation neural mass models”, Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series., eds. Corinto F., Torcini A., Springer, Cham, 1–16 | DOI | MR
[4] Montbrió E., Pazó D., Roxin A., “Macroscopic description for networks of spiking neurons”, Phys. Rev. X, 5:2 (2015), 021028 | DOI
[5] Devalle F., Roxin A., Montbrió E., “Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks”, PLoS Comput. Biol., 13:12 (2017), e1005881 | DOI
[6] Bi H., Segneri M., di Volo M., Torcini A., “Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons”, Phys. Rev. Research, 2:1 (2020), 013042 | DOI
[7] Byrne Á., Brookes M. J., Coombes S., “A mean field model for movement induced changes in the beta rhythm”, Journal of Computational Neuroscience, 43:2 (2017), 143–158 | DOI | MR | Zbl
[8] Schmidt H., Avitabile D., Montbrió E., Roxin A., “Network mechanisms underlying the role of oscillations in cognitive tasks”, PLoS Comput. Biol., 14:9 (2018), e1006430 | DOI
[9] Byrne Á., Ross J., Nicks R., Coombes S., “Mean-field models for EEG/MEG: From oscillations to waves”, Brain Topography, 35:1 (2022), 36–53 | DOI
[10] Gerster M., Taher H., Škoch A., Hlinka J., Guye M., Bartolomei F., Jirsa V., Zakharova A., Olmi S., “Patient-specific network connectivity combined with a next generation neural mass model to test clinical hypothesis of seizure propagation”, Frontiers in Systems Neuroscience, 15 (2021), 675272 | DOI
[11] Lavanga M., Stumme J., Yalcinkaya B. H., Fousek J., Jockwitz C., Sheheitli H., Bittner B., Hashemi M., Petkoski S., Caspers S., Jirsa V., The virtual aging brain: a model-driven explanation for cognitive decline in older subjects, bioRxiv 2022.02.17.480902 | DOI | Zbl
[12] Wilson H. R., Cowan J. D., “Excitatory and inhibitory interactions in localized populations of model neurons”, Biophysical Journal, 12:1 (1972), 1–24 | DOI
[13] van Vreeswijk C., Sompolinsky H., “Chaos in neuronal networks with balanced excitatory and inhibitory activity”, Science, 274:5293 (1996), 1724–1726 | DOI
[14] Brunel N., “Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons”, Journal of Computational Neuroscience, 8:3 (2000), 183–208 | DOI | Zbl
[15] Maslennikov O. V., Kasatkin D. V., Rulkov N. F., Nekorkin V. I., “Emergence of antiphase bursting in two populations of randomly spiking elements”, Phys. Rev. E, 88:4 (2013), 042907 | DOI
[16] Maslennikov O. V., Nekorkin V. I., “Modular networks with delayed coupling: Synchronization and frequency control”, Phys. Rev. E, 90:1 (2014), 012901 | DOI
[17] di Volo M., Torcini A., “Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses”, Phys. Rev. Lett., 121:12 (2018), 128301 | DOI
[18] Keeley S., Byrne Á., Fenton A., Rinzel J., “Firing rate models for gamma oscillations”, Journal of Neurophysiology, 121:6 (2019), 2181–2190 | DOI
[19] Segneri M., Bi H., Olmi S., Torcini A., “Theta-nested gamma oscillations in next generation neural mass models”, Frontiers in Computational Neuroscience, 14 (2020), 47 | DOI
[20] Bi H., di Volo M., Torcini A., “Asynchronous and coherent dynamics in balanced excitatory-inhibitory spiking networks”, Frontiers in Systems Neuroscience, 15 (2021), 752261 | DOI
[21] Ceni A., Olmi S., Torcini A., Angulo-Garcia D., “Cross frequency coupling in next generation inhibitory neural mass models”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:5 (2020), 053121 | DOI | MR | Zbl
[22] Pyragas K., Fedaravičius A. P., Pyragienė T., “Suppression of synchronous spiking in two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons”, Phys. Rev. E, 104:1 (2021), 014203 | DOI | MR
[23] Reyner-Parra D., Huguet G., “Phase-locking patterns underlying effective communication in exact firing rate models of neural networks”, PLoS Comput. Biol., 18:5 (2022), e1009342 | DOI
[24] Klinshov V. V., Smelov P. S., Kirillov S. Y., “Constructive role of shot noise in the collective dynamics of neural networks”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:6 (2023), 061101 | DOI | MR
[25] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, Journal of Statistical Physics, 19:1 (1978), 25–52 | DOI | MR | Zbl