Identification and dynamics prediction of a plane vortex structure based on a mathematical model of a point vortices system
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 710-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the article is developing and analyse an algorithmic method for solution finding of one inverse problem of 2d vortex fluid dynamics. It is identification and prediction of the flow structure evolution of the based on the data on fluid velocity vectors in a set of reference points. Theoretical analysis of convergence and adequacy of the method is difficult due to the ill-posedness typical of inverse problems, these issues studied experimentally. Methods. The proposed method uses a mathematical model of a point vortex dynamics system for identification and prediction flow structures. The parameters of the model system are found by minimising the functional that evaluates the closeness of the original and model vectors fields at the reference points. The prediction of the vortex structure dynamics is based on the solution of the Cauchy problem for a system of ordinary differential equations with the parameters found in the first stage. Results. As a result of the calculations, we found it out: the algorithm converges to the desired minimum from a wide range of initial approximations; the algorithm converges in all cases when the identified structure consists of sufficiently distant vortices; the forecast of the development of the current gives good results with a steady flow; if the above conditions are violated, the part of successful calculations decreases, false identification and an erroneous forecast may occur; with the convergence of the method, the coordinates and circulation of the eddies of the model system are close to the characteristics of the eddies of the test configurations; the structures of the streamlines of the flows are topologically equivalent; convergence depends more on location than on the number of vectors used for identification. Conclusion. An algorithm for solving the problem of identifying and the evolution forecast of a 2d vortex flow structure is proposed when the fluid velocity vectors in a finite set of reference points are known. The method showed its high efficiency when using from 40 to 200 reference points. The results of the study make it possible to recommend the proposed algorithm for identifying flat vortex structures, which consist of vortices separated from each other.
Keywords: vortex structures, identification algorithm, systems of point vortices, minimization
@article{IVP_2023_31_6_a3,
     author = {V. N. Govorukhin},
     title = {Identification and dynamics prediction of a plane vortex structure based on a mathematical model of a point vortices system},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {710--726},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a3/}
}
TY  - JOUR
AU  - V. N. Govorukhin
TI  - Identification and dynamics prediction of a plane vortex structure based on a mathematical model of a point vortices system
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 710
EP  - 726
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a3/
LA  - ru
ID  - IVP_2023_31_6_a3
ER  - 
%0 Journal Article
%A V. N. Govorukhin
%T Identification and dynamics prediction of a plane vortex structure based on a mathematical model of a point vortices system
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 710-726
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a3/
%G ru
%F IVP_2023_31_6_a3
V. N. Govorukhin. Identification and dynamics prediction of a plane vortex structure based on a mathematical model of a point vortices system. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 710-726. http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a3/

[1] Aleksanina M. G., Eremenko A. S., Zagumennov A. A., Kachur V. A., “Vikhri v okeane i atmosfere: raschet po sputnikovym izobrazheniyam”, Meteorologiya i gidrologiya, 2016, no. 9, 41–54

[2] Belonenko T.V., Sholeninova P.V., “Ob identifikatsii sinopticheskikh vikhrei po sputnikovym dannym na primere akvatorii severo-zapadnoi chasti Tikhogo okeana”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13:5 (2016), 79–90 | DOI

[3] Graftieaux L., Michard M., Grosjean N., “Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows”, Meas. Sci. Technol, 12:9 (2001), 1422–1429 | DOI

[4] Kida S., Miura H., “Identification and analysis of vortical structures”, European Journal of Mechanics - B/Fluids, 17:4 (1998), 471–488 | DOI | Zbl

[5] Menon K., Mittal R., “Quantitative analysis of the kinematics and induced aerodynamic loading of individual vortices in vortex-dominated flows: A computation and data-driven approach”, Journal of Computational Physics, 443 (2021), 110515 | DOI | MR

[6] Volkov K. N., Emelyanov V. N., Teterina I. V., Yakovchuk M. S., “Vizualizatsiya vikhrevykh techenii v vychislitelnoi gazovoi dinamike”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 57:8 (2017), 1374–1391 | DOI | Zbl

[7] Yang K., Wu S., Ghista D. N., Yang D., Wong K. K. L., “Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI”, Computer Methods and Programs in Biomedicine, 216 (2022), 106678 | DOI

[8] Soto-Valle R., Cioni S., Bartholomay S., Manolesos M., Nayeri C. N., Bianchini A., \ Paschereit C. O., “Vortex identification methods applied to wind turbine tip vortices”, Wind Energy Science, 7:2 (2022), 585–602 | DOI

[9] Zhang Z., Dong S., Jin R., Dong K., Hou L., Wang B., “Vortex characteristics of a gas cyclone determined with different vortex identification methods”, Powder Technology, 404 (2022), 117370 | DOI

[10] Xue Y., Kumar C., Lee S.-K., Giacobello M., Manovski P., “Identification and analysis of the meandering of a fin-tip vortex using Proper Orthogonal Decomposition (POD)”, International Journal of Heat and Fluid Flow, 82 (2020), 108556 | DOI

[11] Xiong S., He X., Tong Y., Deng Y., Zhu B., “Neural vortex method: From finite Lagrangian particles to infinite dimensional Eulerian dynamics”, Computers Fluids, 258 (2023), 105811 | DOI | Zbl

[12] Govorukhin V. N., “Chislennyi analiz dinamiki raspredelennykh vikhrevykh konfiguratsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 56:8 (2016), 1491–1505 | DOI | MR | Zbl

[13] Filimonova A. M., “Dinamika i advektsiya v vikhrevom parkete”, Izvestiya vuzov. PND, 27:4 (2019), 71–84 | DOI

[14] Jeong J., Hussain F., “On the identification of a vortex”, Journal of Fluid Mechanics, 285 (1995), 69–94 | DOI | MR | Zbl

[15] Kolář V., “Vortex identification: New requirements and limitations”, International Journal of Heat and Fluid Flow, 28:4 (2007), 638–652 | DOI

[16] Giagkiozis I., Fedun V., Scullion E., Jess D. B., Verth G., “Vortex flows in the solar atmosphere: Automated identification and statistical analysis”, The Astrophysical Journal, 869:2 (2018), 169 | DOI

[17] Bai X., Cheng H., Ji B., Long X., Qian Z., Peng X., “Comparative Study of different vortex identification methods in a tip-leakage cavitating flow”, Ocean Engineering, 207 (2020), 107373 | DOI

[18] Canivete Cuissa J. R., Steiner O., “Innovative and automated method for vortex identification”, A, 668 (2022), A118 | DOI

[19] Sadarjoen I. A., Post F. H., “Detection, quantification, and tracking of vortices using streamline geometry”, Computers Graphics, 24:3 (2000), 333–341 | DOI

[20] Govorukhin V. N., Filimonova A. M., “Analiz struktury ploskikh vikhrevykh techenii i ikh izmenenii vo vremeni”, Vychislitelnaya mekhanika sploshnykh sred, 14:4 (2021), 367–376 | DOI

[21] Govorukhin V. N., “An extended and improved particle-spectral method for analysis of unsteady inviscid incompressible flows through a channel of finite length”, International Journal for Numerical Methods in Fluids, 95:4 (2023), 579–602 | DOI | MR

[22] Ahmed S. E., Pawar S., San O., Rasheed A., Tabib M., “A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction”, Computers Fluids, 221 (2021), 104895 | DOI | Zbl

[23] Govorukhin V. N., “Algoritm identifikatsii vikhrevykh pyaten na osnove modelei tochechnykh vikhrei”, Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Estestvennye nauki, 2020, no. 3(207), 11–18 | DOI

[24] Govorukhin V. N., “Perenos passivnykh chastits v pole skorosti dvizhuschegosya po ploskosti vikhrevogo tripolya”, Izvestiya vuzov. PND, 31:3 (2023), 286–304 | DOI

[25] Velasco Fuentes O. U., van Heijst G. J. F., van Lipzig N. P. M., “Unsteady behaviour of a topography-modulated tripole”, Journal of Fluid Mechanics, 307 (1996), 11–41 | DOI | MR | Zbl

[26] Geldhauser C., Romito M., “The point vortex model for the Euler equation”, AIMS Mathematics, 4:3 (2019), 534–575 | DOI | MR | Zbl

[27] Govorukhin V. N., “Variant metoda vikhrei v yacheikakh dlya rascheta ploskikh techenii idealnoi neszhimaemoi zhidkosti”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 51:6 (2011), 1133–1147 | DOI | MR | Zbl

[28] Govorukhin V. N., Filimonova A. M., “Raschet ploskikh geofizicheskikh techenii nevyazkoi neszhimaemoi zhidkosti bessetochno-spektralnym metodom”, Kompyuternye issledovaniya i modelirovanie, 11:3 (2019), 413–426 | DOI

[29] Leweke T., Le Dizès S., Williamson C. H. K., “Dynamics and instabilities of vortex pairs”, Annual Review of Fluid Mechanics, 48 (2016), 507–541 | DOI | Zbl