Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 693-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is to use analytical and numerical methods to consider the problem of the structure and dynamics of the kinks in the sine-Gordon model with "impurities" (or spatial inhomogeneity of the periodic potential).Methods. Using the method of collective variables for the case of three identical point impurities located at the same distance from each other, a system of differential equations is obtained. Resulting system of equations makes it possible to describe the dynamics of the kink taking into account the excitation of localized waves on impurities. To analyze the dynamics of the kink in the case of extended impurities, a numerical finite difference method with an explicit integration scheme was applied. Frequency analysis of kink oscillations and localized waves calculated numerically was performed using a discrete Fourier transform. Results. For the kink dynamics, taking into account the excitation of oscillations in modes, a system of equations for the coordinate of the kink center and the amplitudes of waves localized on impurities is obtained and investigated. Significant differences are observed in the dynamics of the kink when interacting with a repulsive and attractive impurity. The dynamics of the kink in a model with three identical extended impurities, taking into account possible resonant effects, was solved numerically. It is established that the found scenarios of kink dynamics for an extended rectangular impurity are qualitatively similar to the scenarios obtained for a point impurity described using a delta function. All possible scenarios of kink dynamics were determined and described taking into account resonant effects. Conclusion. The analysis of the influence of system parameters and initial conditions on possible scenarios of kink dynamics is carried out. Critical and resonant kink velocities are found as functions of the impurity parameters.
Keywords: sine-Gordon equation, kink, soliton, breather, method of collective coordinates, impurity
@article{IVP_2023_31_6_a2,
     author = {E. G. Ekomasov and R. V. Kudryavtsev and K. Yu. Samsonov and V. N. Nazarov and D. K. Kabanov},
     title = {Kink dynamics of the {sine-Gordon} equation in a model with three identical attracting or repulsive impurities},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {693--709},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a2/}
}
TY  - JOUR
AU  - E. G. Ekomasov
AU  - R. V. Kudryavtsev
AU  - K. Yu. Samsonov
AU  - V. N. Nazarov
AU  - D. K. Kabanov
TI  - Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 693
EP  - 709
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a2/
LA  - ru
ID  - IVP_2023_31_6_a2
ER  - 
%0 Journal Article
%A E. G. Ekomasov
%A R. V. Kudryavtsev
%A K. Yu. Samsonov
%A V. N. Nazarov
%A D. K. Kabanov
%T Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 693-709
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a2/
%G ru
%F IVP_2023_31_6_a2
E. G. Ekomasov; R. V. Kudryavtsev; K. Yu. Samsonov; V. N. Nazarov; D. K. Kabanov. Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 693-709. http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a2/

[1] Belova T. I., Kudryavtsev A. E., “Solitony i ikh vzaimodeistviya v klassicheskoi teorii polya”, UFN, 167:4 (1997), 377–406 | DOI

[2] (eds) The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. Cuevas-Maraver J., Kevrekidis P. G., Williams F., Springer, Cham, 2014, 263 pp. | DOI

[3] Braun O. M., Kivshar Yu. S., Model Frenkelya-Kontorovoi: Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008, 536 pp.

[4] Chevizovich D., Michieletto D., Mvogo A., Zakiryanov F., Zdravković S., “A review on nonlinear DNA physics”, R. Soc. Open Sci., 7:11 (2020), 200774 | DOI

[5] Starodub I. O., Zolotaryuk Y., “Fluxon interaction with the finite-size dipole impurity”, Phys. Lett. A, 383:13 (2019), 1419–1426 | DOI | MR

[6] Kryuchkov S. V., Kukhar E. I., “Nonlinear electromagnetic waves in semi-Dirac nanostructures with superlattice”, Eur. Phys. J. B, 93:4 (2020), 62 | DOI | MR | Zbl

[7] Kiselev V. V., Raskovalov A. A., Batalov S. V., “Nonlinear interaction of domain walls and breathers with a spin-wave field”, Chaos, Solitons Fractals, 127 (2019), 217–225 | DOI | MR

[8] Ekomasov E. G., Nazarov V. N., Gumerov A. M., Samsonov K. Yu., Murtazin R. R., “Upravlenie s pomoschyu vneshnego magnitnogo polya parametrami magnitnogo brizera v trekhsloinoi ferromagnitnoi strukture”, Pisma o materialakh, 10:2 (2020), 141–146 | DOI | MR

[9] Delev V. A., Nazarov V. N., Skaldin O. A., Batyrshin E. S., Ekomasov E. G., “Slozhnaya dinamika kaskada kink-antikinkovykh vzaimodeistvii v lineinom defekte elektrokonvektivnoi struktury nematika”, Pisma v ZhETF, 110:9 (2019), 607–613

[10] Kälbermann G., “The sine-Gordon wobble”, J. Phys. A: Math. Gen, 37:48 (2004), 11603–11612 | DOI | MR | Zbl

[11] Ferreira L. A., Piette B., Zakrzewski W. J., “Wobbles and other kink-breather solutions of the sine-Gordon model”, Phys. Rev. E, 77:3 (2008), 036613 | DOI

[12] Dorey P., Gorina A., Perapechka I., Romańczukiewicz T., Shnir Y., “Resonance structures in kink-antikink collisions in a deformed sine-Gordon model”, Journal of High Energy Physics, 2021:9 (2021), 145 | DOI | MR | Zbl

[13] Fabian A. L., Kohl R., Biswas A., “Perturbation of topological solitons due to sine-Gordon equation and its type”, Communications in Nonlinear Science and Numerical Simulation, 14:4 (2009), 1227–1244 | DOI | MR | Zbl

[14] Saadatmand D., Dmitriev S. V., Borisov D. I., Kevrekidis P. G., “Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect”, Phys. Rev. E, 90:5 (2014), 052902 | DOI | MR

[15] Kivshar Y. S., Pelinovsky D. E., Cretegny T., Peyrard M., “Internal modes of solitary waves”, Phys. Rev. Lett., 80:23 (1998), 5032–5035 | DOI

[16] González J. A., Bellorín A., Guerrero L. E., “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations”, Phys. Rev. E, 65:6 (2002), 065601 | DOI | MR

[17] González J. A., Bellorín A., García-Ñustes M. A., Guerrero L. E., Jiménez S., Vázquez L., “Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations”, Phys. Lett. A, 381:24 (2017), 1995–1998 | DOI | MR | Zbl

[18] Gomide O. M. L., Guardia M., Seara T. M., “Critical velocity in kink-defect interaction models: Rigorous results”, Journal of Differential Equations, 269:4 (2020), 3282–3346 | DOI | MR | Zbl

[19] Javidan K., “Analytical formulation for soliton-potential dynamics”, Phys. Rev. E, 78:4 (2008), 046607 | DOI

[20] Piette B., Zakrzewski W. J., “Scattering of sine-Gordon kinks on potential wells”, J. Phys. A: Math. Theor, 40:22 (2007), 5995–6010 | DOI | Zbl

[21] Al-Alawi J. H., Zakrzewski W. J., “Scattering of topological solitons on barriers and holes of deformed Sine–Gordon models”, J. Phys. A: Math. Theor, 41:31 (2008), 315206 | DOI | MR | Zbl

[22] Baron H. E., Zakrzewski W. J., “Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models”, Journal of High Energy Physics, 2016:6 (2016), 185 | DOI | Zbl

[23] Gumerov A. M., Ekomasov E. G., Murtazin R. R., Nazarov V. N., “Transformatsiya solitonov uravneniya sinus-Gordona v modelyakh s peremennymi koeffitsientami i zatukhaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:4 (2015), 631–640 | DOI | MR | Zbl

[24] Goodman R. H., Haberman R., “Interaction of sine-Gordon kinks with defects: the two-bounce resonance”, Physica D: Nonlinear Phenomena, 195:3–4 (2004), 303–323 | DOI | MR | Zbl

[25] Gumerov A. M., Ekomasov E. G., Zakiryanov F. K., Kudryavtsev R. V., “Struktura i svoistva chetyrekhkinkovykh multisolitonov uravneniya sinus-Gordona”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:3 (2014), 481–495 | DOI | MR | Zbl

[26] Ekomasov E. G., Gumerov A. M., Murtazin R. R., “Interaction of sine-Gordon solitons in the model with attracting impurities”, Mathematical Methods in the Applied Sciences, 40:17 (2016), 6178–6186 | DOI | MR

[27] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., “O vozmozhnosti nablyudeniya rezonansnogo vzaimodeistviya kinkov uravneniya sinus-Gordona s lokalizovannymi volnami v realnykh fizicheskikh sistemakh”, Pisma v ZhETF, 101:12 (2015), 935–939

[28] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., “Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping”, Journal of Computational and Applied Mathematics, 312 (2017), 198–208 | DOI | MR | Zbl

[29] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., Dmitriev S. V., Nazarov V. N., “Multisoliton dynamics in the sine-Gordon model with two point impurities”, Brazilian Journal of Physics, 48:6 (2018), 576–584 | DOI

[30] Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., Fakhretdinov M. I., “Excitation of large-amplitude localized nonlinear waves by the interaction of kinks of the sine-Gordon equation with attracting impurity”, Russian Journal of Nonlinear Dynamics, 15:1 (2019), 21–34 | DOI | MR | Zbl

[31] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater, 339 (2013), 133–137 | DOI

[32] Ekomasov E. G., Murtazin R. R., Nazarov V. N., “Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange”, J. Magn. Magn. Mater, 385 (2015), 217–221 | DOI

[33] Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., “One-dimensional dynamics of magnetic inhomogeneities in a three- and five-layer ferromagnetic structure with different values of the magnetic parameters”, J. Phys.: Conf. Ser, 1389 (2019), 012004 | DOI

[34] Ekomasov E. G., Samsonov K. Yu., Gumerov A. M., Kudryavtsev R. V., “Struktura i dinamika lokalizovannykh nelineinykh voln uravneniya sinus-Gordona v modeli s odinakovymi prityagivayuschimi primesyami”, Izvestiya vuzov. PND, 30:6 (2022), 749–765 | DOI

[35] Magnus K., Kolebaniya: Vvedenie v issledovanie kolebatelnykh sistem, Mir, M., 1982, 304 pp.

[36] Faleichik B. V., Odnoshagovye metody chislennogo resheniya zadachi Koshi, BGU, Minsk, 2010, 42 pp.