Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_6_a1, author = {A. A. Safronov and A. A. Koroteev and A. L. Grigoriev and N. I. Filatov}, title = {Simulation of self-induced capillary break up of a viscous liquid jet}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {680--692}, publisher = {mathdoc}, volume = {31}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/} }
TY - JOUR AU - A. A. Safronov AU - A. A. Koroteev AU - A. L. Grigoriev AU - N. I. Filatov TI - Simulation of self-induced capillary break up of a viscous liquid jet JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 680 EP - 692 VL - 31 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/ LA - ru ID - IVP_2023_31_6_a1 ER -
%0 Journal Article %A A. A. Safronov %A A. A. Koroteev %A A. L. Grigoriev %A N. I. Filatov %T Simulation of self-induced capillary break up of a viscous liquid jet %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 680-692 %V 31 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/ %G ru %F IVP_2023_31_6_a1
A. A. Safronov; A. A. Koroteev; A. L. Grigoriev; N. I. Filatov. Simulation of self-induced capillary break up of a viscous liquid jet. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 680-692. http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/
[1] Demyanko Yu. G., Konyukhov G. V., Koroteev A. S., Kuzmin E. P., Pavelev A. A., Yadernye raketnye dvigateli, Norma-Inform, M., 2001, 414 pp.
[2] Koroteev A. A., Kapelnye kholodilniki - izluchateli kosmicheskikh energeticheskikh ustanovok novogo pokoleniya, Izdatelstvo «Mashinostroenie», M., 2008, 184 pp.
[3] Bondareva N. V., Glukhov L. M., Koroteev A. A., Krasovskii V. G., Kustov L. M., Nagel Yu. A., Safronov A. A., Filatov N. I., Chernikova E. A., “Beskarkasnye sistemy otvoda nizkopotentsialnogo tepla v kosmose: uspekhi otrabotok i nereshennye zadachi”, Izvestiya Rossiiskoi akademii nauk. Energetika, 2015, no. 4, 130–142
[4] Koroteev A. A., Safronov A. A., Filatov N. I., Grigorev A. L., Khlynov A. V., “Issledovanie generatorov kapel beskarkasnykh sistem teplootvoda v kosmose”, Kosmicheskaya tekhnika i tekhnologii, 2023, no. 1 (40), 40–51
[5] Fuchikami N., Ishioka S., Kiyono K., “Simulation of a dripping faucet”, Journal of the Physical Society of Japan, 68:4 (1999), 1185–1196 | DOI
[6] Kiyono K., Fuchikami N., “Bifurcations induced by periodic forcing and taming chaos in dripping faucets”, Journal of the Physical Society of Japan, 71:1 (2002), 49–55 | DOI
[7] Umemura A., Osaka J., Shinjo J., Nakamura Y., Matsumoto S., Kikuchi M., Taguchi T., Ohkuma H., Dohkojima T., Shimaoka T., Sone T., Nakagami H., Ono W., “Coherent capillary wave structure revealed by ISS experiments for spontaneous nozzle jet disintegration”, Microgravity Sci. Technol, 32:3 (2020), 369–397 | DOI
[8] Umemura A., “Self-destabilising loop of a low-speed water jet emanating from an orifice in microgravity”, Journal of Fluid Mechanics, 797 (2016), 146–180 | DOI | MR | Zbl
[9] Umemura A., Osaka J., “Self-destabilizing loop observed in a jetting-to-dripping transition”, Journal of Fluid Mechanics, 752 (2014), 184–218 | DOI
[10] Umemura A., “Model for the initiation of atomization in a high-speed laminar liquid jet”, Journal of Fluid Mechanics, 757 (2014), 665–700 | DOI
[11] Yakubenko P. A., “Capillary instability of an ideal jet of large but finite length”, European Journal of Mechanics - B/Fluids, 16:1 (1997), 39–47 | Zbl
[12] Kulikovskii A. G., “Ob ustoichivosti odnorodnykh sostoyanii”, Prikladnaya matematika i mekhanika, 30:1 (1966), 148–153
[13] Safronov A. A., “Investigation of the structure of waves generated by a $\delta$-perturbation of the surface of a capillary jet”, Russian Journal of Nonlinear Dynamics, 18:3 (2022), 367–378 | DOI | MR
[14] Ametistov E. V., Dmitriev A. S., Monodispersnye sistemy i tekhnologii, Izdatelstvo MEI, M., 2002, 392 pp.
[15] Eggers J., Dupont T. F., “Drop formation in a one-dimensional approximation of the Navier–Stokes equation”, Journal of Fluid Mechanics, 262 (1994), 205–221 | DOI | MR | Zbl
[16] Safronov A. A., “Osobennosti kapillyarnogo raspada strui zhidkosti pri chislakh Onezorga bolshe edinitsy”, Inzhenerno-fizicheskii zhurnal, 90:1 (2017), 176–185
[17] Bondareva N. V., Grigorev A. L., Korovin T. G., Koroteev A. A., Safronov A. A., Skorobogatko T. D., Filatov N. I., Khlynov A. V., “Eksperimentalnoe issledovanie vliyaniya chisla Onezorge na razmery kapel, obrazovavshikhsya v rezultate kapillyarnogo raspada strui”, Teplofizika i aeromekhanika, 26:5 (2019), 773–777 | MR
[18] Eggers J., “Drop formation – an overview”, ZAMM. Z. Angew. Math. Mech, 85:6 (2005) | DOI | Zbl
[19] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986, 736 pp.
[20] Clavet S., Beaudoin P., Poulin P., “Particle-based viscoelastic fluid simulation”, Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation (29-31 July 2005, Los Angeles, California), 2005, 219–228 | DOI
[21] Safronov A. A., Koroteev A. A., Filatov N. I., Bondareva N. V., “Bystrye rastuschie volny v strue vyazkoi zhidkosti, initsiirovannye kolebaniyami kontsevoi kapli”, Teplofizika i aeromekhanika, 28:2 (2021), 255–263 | MR