Simulation of self-induced capillary break up of a viscous liquid jet
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 680-692.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the study is to reveal the patterns of self-induced disintegration of a viscous liquid jet flowing out at low speed from a capillary hole under microgravity conditions. The research method is numerical modeling of the regularities of self-induced capillary decay using the methods of Lagrange mechanics. Results. A verified technique for numerical simulation of a capillary jet of a viscous liquid based on the methods of Lagrange mechanics. Identified patterns of self-induced decay of a viscous jet under microgravity conditions. Dependence of the length of the undisintegrated part of the jet on the viscosity of the liquid and the velocity of its outflow from the capillary nozzle. Conclusion. The developed numerical simulation technique allows one to correctly and efficiently (from the point of view of the computing resource used) simulate the dynamics of a capillary jet, taking into account complex nonlinear and boundary effects. A pronounced effect of viscosity on the regularities of the disintegration of a jet moving at low speed has been established. The obtained spectral characteristics of perturbations in the jet make it possible to raise the question of the possibility of developing an asymptotic theory of the self-induced decay of a viscous jet.
Keywords: capillary disintegration of a jet, capillary waves, global instability, liquid droplet-radiator
@article{IVP_2023_31_6_a1,
     author = {A. A. Safronov and A. A. Koroteev and A. L. Grigoriev and N. I. Filatov},
     title = {Simulation of self-induced capillary break up of a viscous liquid jet},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {680--692},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/}
}
TY  - JOUR
AU  - A. A. Safronov
AU  - A. A. Koroteev
AU  - A. L. Grigoriev
AU  - N. I. Filatov
TI  - Simulation of self-induced capillary break up of a viscous liquid jet
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 680
EP  - 692
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/
LA  - ru
ID  - IVP_2023_31_6_a1
ER  - 
%0 Journal Article
%A A. A. Safronov
%A A. A. Koroteev
%A A. L. Grigoriev
%A N. I. Filatov
%T Simulation of self-induced capillary break up of a viscous liquid jet
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 680-692
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/
%G ru
%F IVP_2023_31_6_a1
A. A. Safronov; A. A. Koroteev; A. L. Grigoriev; N. I. Filatov. Simulation of self-induced capillary break up of a viscous liquid jet. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 6, pp. 680-692. http://geodesic.mathdoc.fr/item/IVP_2023_31_6_a1/

[1] Demyanko Yu. G., Konyukhov G. V., Koroteev A. S., Kuzmin E. P., Pavelev A. A., Yadernye raketnye dvigateli, Norma-Inform, M., 2001, 414 pp.

[2] Koroteev A. A., Kapelnye kholodilniki - izluchateli kosmicheskikh energeticheskikh ustanovok novogo pokoleniya, Izdatelstvo «Mashinostroenie», M., 2008, 184 pp.

[3] Bondareva N. V., Glukhov L. M., Koroteev A. A., Krasovskii V. G., Kustov L. M., Nagel Yu. A., Safronov A. A., Filatov N. I., Chernikova E. A., “Beskarkasnye sistemy otvoda nizkopotentsialnogo tepla v kosmose: uspekhi otrabotok i nereshennye zadachi”, Izvestiya Rossiiskoi akademii nauk. Energetika, 2015, no. 4, 130–142

[4] Koroteev A. A., Safronov A. A., Filatov N. I., Grigorev A. L., Khlynov A. V., “Issledovanie generatorov kapel beskarkasnykh sistem teplootvoda v kosmose”, Kosmicheskaya tekhnika i tekhnologii, 2023, no. 1 (40), 40–51

[5] Fuchikami N., Ishioka S., Kiyono K., “Simulation of a dripping faucet”, Journal of the Physical Society of Japan, 68:4 (1999), 1185–1196 | DOI

[6] Kiyono K., Fuchikami N., “Bifurcations induced by periodic forcing and taming chaos in dripping faucets”, Journal of the Physical Society of Japan, 71:1 (2002), 49–55 | DOI

[7] Umemura A., Osaka J., Shinjo J., Nakamura Y., Matsumoto S., Kikuchi M., Taguchi T., Ohkuma H., Dohkojima T., Shimaoka T., Sone T., Nakagami H., Ono W., “Coherent capillary wave structure revealed by ISS experiments for spontaneous nozzle jet disintegration”, Microgravity Sci. Technol, 32:3 (2020), 369–397 | DOI

[8] Umemura A., “Self-destabilising loop of a low-speed water jet emanating from an orifice in microgravity”, Journal of Fluid Mechanics, 797 (2016), 146–180 | DOI | MR | Zbl

[9] Umemura A., Osaka J., “Self-destabilizing loop observed in a jetting-to-dripping transition”, Journal of Fluid Mechanics, 752 (2014), 184–218 | DOI

[10] Umemura A., “Model for the initiation of atomization in a high-speed laminar liquid jet”, Journal of Fluid Mechanics, 757 (2014), 665–700 | DOI

[11] Yakubenko P. A., “Capillary instability of an ideal jet of large but finite length”, European Journal of Mechanics - B/Fluids, 16:1 (1997), 39–47 | Zbl

[12] Kulikovskii A. G., “Ob ustoichivosti odnorodnykh sostoyanii”, Prikladnaya matematika i mekhanika, 30:1 (1966), 148–153

[13] Safronov A. A., “Investigation of the structure of waves generated by a $\delta$-perturbation of the surface of a capillary jet”, Russian Journal of Nonlinear Dynamics, 18:3 (2022), 367–378 | DOI | MR

[14] Ametistov E. V., Dmitriev A. S., Monodispersnye sistemy i tekhnologii, Izdatelstvo MEI, M., 2002, 392 pp.

[15] Eggers J., Dupont T. F., “Drop formation in a one-dimensional approximation of the Navier–Stokes equation”, Journal of Fluid Mechanics, 262 (1994), 205–221 | DOI | MR | Zbl

[16] Safronov A. A., “Osobennosti kapillyarnogo raspada strui zhidkosti pri chislakh Onezorga bolshe edinitsy”, Inzhenerno-fizicheskii zhurnal, 90:1 (2017), 176–185

[17] Bondareva N. V., Grigorev A. L., Korovin T. G., Koroteev A. A., Safronov A. A., Skorobogatko T. D., Filatov N. I., Khlynov A. V., “Eksperimentalnoe issledovanie vliyaniya chisla Onezorge na razmery kapel, obrazovavshikhsya v rezultate kapillyarnogo raspada strui”, Teplofizika i aeromekhanika, 26:5 (2019), 773–777 | MR

[18] Eggers J., “Drop formation – an overview”, ZAMM. Z. Angew. Math. Mech, 85:6 (2005) | DOI | Zbl

[19] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986, 736 pp.

[20] Clavet S., Beaudoin P., Poulin P., “Particle-based viscoelastic fluid simulation”, Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation (29-31 July 2005, Los Angeles, California), 2005, 219–228 | DOI

[21] Safronov A. A., Koroteev A. A., Filatov N. I., Bondareva N. V., “Bystrye rastuschie volny v strue vyazkoi zhidkosti, initsiirovannye kolebaniyami kontsevoi kapli”, Teplofizika i aeromekhanika, 28:2 (2021), 255–263 | MR