Study of character of modulation instability in cyclotron resonance interaction of an electromagnetic wave with a counterpropagating rectilinear electron beam
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 597-609.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the interaction of a monochromatic electromagnetic wave with a counterpropagating electron beam moving in an axial magnetic field is considered. The purpose of this study is to investigate the conditions for occurrence of modulation instability (MI) in such a system and to determine at which parameters of the incident wave the MI is absolute or convective. Methods. Theoretical analysis of the MI character is carried out by studying the asymptotic form of unstable perturbations using the saddle-point analysis. The analytical results are verified by numerical simulations. Results. Theoretically, the boundary of change in the character of MI on the plane of input signal parameters (amplitude and detuning of the frequency from the cyclotron resonance) is determined. Numerical simulations confirm that as the signal frequency increases, the regime of self-modulation, which corresponds to the absolute MI, is replaced by the stationary single-frequency transmission corresponding to the convective MI. The numerical results coincide with the analytical ones for the system, which is matched at the end. The matching is implemented by smooth increasing of the guiding magnetic field in the region of electron beam injection. Conclusion. Determining the analytical conditions for the implementation of the absolute MI is of practical interest, since the emerging self-modulation can lead to the generation of trains of pulses with the spectrum in the form of frequency combs.
Keywords: modulation instability, absolute/convective instability, nonlinear waves, microwave solitons, cyclotron resonance.
@article{IVP_2023_31_5_a5,
     author = {A. A. Rostuntsova and N. M. Ryskin},
     title = {Study of character of modulation instability in cyclotron resonance interaction of an electromagnetic wave with a counterpropagating rectilinear electron beam},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {597--609},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a5/}
}
TY  - JOUR
AU  - A. A. Rostuntsova
AU  - N. M. Ryskin
TI  - Study of character of modulation instability in cyclotron resonance interaction of an electromagnetic wave with a counterpropagating rectilinear electron beam
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 597
EP  - 609
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a5/
LA  - ru
ID  - IVP_2023_31_5_a5
ER  - 
%0 Journal Article
%A A. A. Rostuntsova
%A N. M. Ryskin
%T Study of character of modulation instability in cyclotron resonance interaction of an electromagnetic wave with a counterpropagating rectilinear electron beam
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 597-609
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a5/
%G ru
%F IVP_2023_31_5_a5
A. A. Rostuntsova; N. M. Ryskin. Study of character of modulation instability in cyclotron resonance interaction of an electromagnetic wave with a counterpropagating rectilinear electron beam. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 597-609. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a5/

[1] Benjamin T. B., “Instability of periodic wavetrains in nonlinear dispersive systems”, Proc. R. Soc. Lond. A, 299:1456 (1967), 59–76 | DOI

[2] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 696 pp.

[3] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989, 328 pp.

[4] Ostrovskii L. A., Potapov A. I., Vvedenie v teoriyu modulirovannykh voln, Fizmatlit, M., 2003, 398 pp.

[5] Zakharov V. E., Ostrovsky L. A., “Modulation instability: The beginning”, Physica D, 238:5 (2009), 540–548 | DOI

[6] Ryskin N. M., Trubetskov D. I., Nelineinye volny, URSS, M., 2021, 312 pp.

[7] Ryskin N. M., Kolebaniya i volny v nelineinykh aktivnykh sredakh, Izdatelstvo Saratovskogo universiteta, Saratov, 2017, 102 pp.

[8] Balyakin A. A., Ryskin N. M., “Smena kharaktera modulyatsionnoi neustoichivosti vblizi kriticheskoi chastoty”, Pisma v ZhTF, 30:5 (2004), 6–13

[9] Balyakin A. A., Ryskin N. M., “Modulation instability in a nonlinear dispersive medium near cut-off frequency”, Nonlinear Phenomena in Complex Systems, 7:1 (2004), 34–42

[10] Rostuntsova A. A., Ryskin N. M., Zotova I. V., Ginzburg N. S., “Modulation instability of an electromagnetic wave interacting with a counterpropagating electron beam under condition of cyclotron resonance absorption”, Phys. Rev. E, 106:1 (2022), 014214 | DOI

[11] Newell A. C., “Nonlinear tunnelling”, J. Math. Phys., 19:5 (1978), 1126–1133 | DOI

[12] Zotova I. V., Ginzburg N. S., Zheleznov I. V., Sergeev A. S., “Modulyatsiya intensivnogo SVCh-izlucheniya pri rezonansnom vzaimodeistvii so vstrechnym potokom nevozbuzhdennykh tsiklotronnykh ostsillyatorov”, Pisma v ZhTF, 40:12 (2014), 1–10

[13] Zotova I. V., Ginzburg N. S., Sergeev A. S., Kocharovskaya E. R., Zaslavsky V. Y., “Conversion of an electromagnetic wave into a periodic train of solitons under cyclotron resonance interaction with a backward beam of unexcited electron-oscillators”, Phys. Rev. Lett., 113:14 (2014), 143901 | DOI

[14] Ginzburg N. S., Zotova I. V., Kocharovskaya E. R., Sergeev A. S., Zheleznov I. V., Zaslavskii V. Yu., “Solitony samoindutsirovannoi prozrachnosti i dissipativnye solitony v sistemakh mikrovolnovoi elektroniki”, Izvestiya vuzov. Radiofizika, 63:9 (2020), 796–824

[15] Benirschke D. J., Han N., Burghoff D., “Frequency comb ptychoscopy”, Nat. Commun, 12:1 (2021), 4244 | DOI

[16] Hagmann M. J., “Scanning frequency comb microscopy–A new method in scanning probe microscopy”, AIP Advances, 8:12 (2018), 125203 | DOI

[17] Gaponov A. V., Petelin M. I., Yulpatov V. K., “Indutsirovannoe izluchenie vozbuzhdennykh klassicheskikh ostsillyatorov i ego ispolzovanie v vysokochastotnoi elektronike”, Izvestiya vuzov. Radiofizika, 10:9 (1967), 1414–1453

[18] Kuzelev M. V., Rukhadze A. A., Metody teorii voln v sredakh s dispersiei, Fizmatlit, M., 2007, 272 pp.

[19] Barletta A., Celli M., “Convective to absolute instability transition in a horizontal porous channel with open upper boundary”, Fluids, 2:2 (2017), 33 | DOI