Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_5_a4, author = {A. M. Vahlaeva and J. M. Ishbulatov and A. S. Karavaev and V. I. Ponomarenko and M. D. Prokhorov}, title = {Mathematical model of the photoplethysmogram for testing methods of biological signals analysis}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {586--596}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a4/} }
TY - JOUR AU - A. M. Vahlaeva AU - J. M. Ishbulatov AU - A. S. Karavaev AU - V. I. Ponomarenko AU - M. D. Prokhorov TI - Mathematical model of the photoplethysmogram for testing methods of biological signals analysis JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 586 EP - 596 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a4/ LA - ru ID - IVP_2023_31_5_a4 ER -
%0 Journal Article %A A. M. Vahlaeva %A J. M. Ishbulatov %A A. S. Karavaev %A V. I. Ponomarenko %A M. D. Prokhorov %T Mathematical model of the photoplethysmogram for testing methods of biological signals analysis %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 586-596 %V 31 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a4/ %G ru %F IVP_2023_31_5_a4
A. M. Vahlaeva; J. M. Ishbulatov; A. S. Karavaev; V. I. Ponomarenko; M. D. Prokhorov. Mathematical model of the photoplethysmogram for testing methods of biological signals analysis. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 586-596. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a4/
[1] Gorshkov O., Ombao H., “Multi-chaotic analysis of inter-beat (R-R) intervals in cardiac signals for discrimination between normal and pathological classes”, Entropy (Basel), 23:1 (2021), 112 | DOI
[2] Fagard R. H., Stolarz K., Kuznetsova T., Seidlerova J., Tikhonoff V., Grodzicki T., Nikitin Y., Filipovsky J., Peleska J., Casiglia E., Thijs L., Staessen J. A., Kawecka-Jaszcz K., “Sympathetic activity, assessed by power spectral analysis of heart rate variability, in white-coat, masked and sustained hypertension versus true normotension”, J. Hypertens, 25:11 (2007), 2280–2285 | DOI
[3] Borovkova E. I., Prokhorov M. D., Kiselev A. R., Hramkov A. N., Mironov S. A., Agaltsov M. V., Ponomarenko V. I., Karavaev A. S., Drapkina O. M., Penzel T., “Directional couplings between the respiration and parasympathetic control of the heart rate during sleep and wakefulness in healthy subjects at different ages”, Front. Netw. Physiol., 2 (2022), 942700 | DOI
[4] Ponomarenko V. I., Prokhorov M. D., Karavaev A. S., Kiselev A. R., Gridnev V. I., Bezruchko B. P., “Synchronization of low-frequency oscillations in the cardiovascular system: Application to medical diagnostics and treatment”, The European Physical Journal Special Topics, 222:10 (2013), 2687–2696 | DOI
[5] Lefrandt J. D., Smit A. J., Zeebregts C. J., Gans R. O. B., Hoogenberg K. H., “Autonomic dysfunction in diabetes: a consequence of cardiovascular damage”, Current Diabetes Reviews, 6:6 (2010), 348–358 | DOI
[6] Dimitriev D. A., Saperova E. V., Dimitriev A. D., “State anxiety and nonlinear dynamics of heart rate variability in students”, PLoS ONE, 11:1 (2016), e0146131 | DOI
[7] Deka B., Deka D., “Nonlinear analysis of heart rate variability signals in meditative state: a review and perspective”, BioMedical Engineering OnLine, 22:1 (2023), 35 | DOI
[8] de Abreu R. M., Porta A., Rehder-Santos P., Cairo B., Sakaguchi C. A., da Silva C. D., Signini É. F., Milan-Mattos J. C., Catai A. M., “Cardiorespiratory coupling strength in athletes and non-athletes”, Respiratory Physiology Neurobiology, 305 (2022), 103943 | DOI
[9] Delliaux S., Ichinose M., Watanabe K., Fujii N., Nishiyasu T., “Muscle metaboreflex activation during hypercapnia modifies nonlinear heart rhythm dynamics, increasing the complexity of the sinus node autonomic regulation in humans”, Pflügers Archiv - European Journal of Physiology, 475:4 (2023), 527–539 | DOI
[10] Karavaev A. S., Skazkina V. V., Borovkova E. I., Prokhorov M. D., Hramkov A. N., Ponomarenko V. I., Runnova A. E., Gridnev V. I., Kiselev A. R., Kuznetsov N. V., Chechurin L. S., Penzel T., “Synchronization of the processes of autonomic control of blood circulation in humans is different in the awake state and in sleep stages”, Front. Neurosci., 15 (2022), 791510 | DOI
[11] Goldstein D. S., Bentho O., Park M.-Y., Sharabi Y., “Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes”, Exp. Physiol., 96:12 (2011), 1255–1261 | DOI
[12] Natarajan A., Pantelopoulos A., Emir-Farinas H., Natarajan P., “Heart rate variability with photoplethysmography in 8 million individuals: a cross-sectional study”, The Lancet Digital Health, 2:12 (2020), E650–E657 | DOI
[13] Ringwood J. V., Malpas S. C., “Slow oscillations in blood pressure via a nonlinear feedback model”, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 280:4 (2001), R1105–R1115 | DOI
[14] Tang Q., Chen Z., Ward R., Elgendi M., “Synthetic photoplethysmogram generation using two Gaussian functions”, Sci. Rep., 10:1 (2020), 13883 | DOI
[15] McSharry P. E., Clifford G. D., Tarassenko L., Smith L. A., “A dynamical model for generating synthetic electrocardiogram signals”, IEEE Transactions on Biomedical Engineering, 50:3 (2003), 289–294 | DOI
[16] Cheng L., Khoo M. C. K., “Modeling the autonomic and metabolic effects of obstructive sleep apnea: a simulation study”, Front. Physiol., 2 (2012), 111 | DOI
[17] Kotani K., Struzik Z. R., Takamasu K., Stanley H. E., Yamamoto Y., “Model for complex heart rate dynamics in health and diseases”, Phys. Rev. E, 72:4 (2005), 041904 | DOI