Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_5_a2, author = {E. D. Illarionova and O. I. Moskalenko}, title = {Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {566--574}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/} }
TY - JOUR AU - E. D. Illarionova AU - O. I. Moskalenko TI - Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 566 EP - 574 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/ LA - ru ID - IVP_2023_31_5_a2 ER -
%0 Journal Article %A E. D. Illarionova %A O. I. Moskalenko %T Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 566-574 %V 31 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/ %G ru %F IVP_2023_31_5_a2
E. D. Illarionova; O. I. Moskalenko. Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 566-574. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/