Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_5_a2, author = {E. D. Illarionova and O. I. Moskalenko}, title = {Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {566--574}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/} }
TY - JOUR AU - E. D. Illarionova AU - O. I. Moskalenko TI - Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 566 EP - 574 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/ LA - ru ID - IVP_2023_31_5_a2 ER -
%0 Journal Article %A E. D. Illarionova %A O. I. Moskalenko %T Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 566-574 %V 31 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/ %G ru %F IVP_2023_31_5_a2
E. D. Illarionova; O. I. Moskalenko. Multistability near the boundary of noise-induced synchronization in ensembles of uncoupled chaotic systems. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 566-574. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a2/
[1] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, New York, 2001, 432 pp. | DOI
[2] Anishchenko V. S., Astakhov V., Vadivasova T., Neiman A., Schimansky-Geier L., Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments, Springer-Verlag, Berlin Heidelberg, 2007, 446 pp. | DOI
[3] Balanov A., Janson N., Postnov D., Sosnovtseva O., Synchronization: From Simple to Complex, Springer-Verlag, Berlin Heidelberg, 2009, 426 pp. | DOI
[4] Boccaletti S., Pisarchik A. N., del Genio C. I., Amann A., Synchronization: From Coupled Systems to Complex Networks, Cambridge University Press, Cambridge, 2018, 264 pp. | DOI
[5] Boccaletti S., Kurths J., Osipov G., Valladares D. L., Zhou C. S., “The synchronization of chaotic systems”, Physics Reports, 366:1–2 (2002), 1–101 | DOI
[6] Rosenblum M. G., Pikovsky A. S., Kurths J., “Synchronization approach to analysis of biological systems”, Fluctuation and Noise Letters, 4:1 (2004), L53–L62 | DOI
[7] Koronovskii A. A., Moskalenko O. I., Khramov A. E., “O primenenii khaoticheskoi sinkhronizatsii dlya skrytoi peredachi informatsii”, Uspekhi fizicheskikh nauk, 179:12 (2009), 1281–1310 | DOI
[8] Zhang F., Chen G., Li C., Kurths J., “Chaos synchronization in fractional differential systems”, Phil. Trans. R. Soc. A, 371:1990 (2013), 20120155 | DOI
[9] Strelkova G. I., Anischenko V. S., “Prostranstvenno-vremennye struktury v ansamblyakh svyazannykh khaoticheskikh sistem”, Uspekhi fizicheskikh nauk, 190:2 (2020), 160–178 | DOI
[10] Toral R., Mirasso C. R., Hernández-García E., Piro O., “Analytical and numerical studies of noise-induced synchronization of chaotic systems”, Chaos, 11:3 (2001), 665–673 | DOI
[11] Wang Y., Lai Y.-C., Zheng Z., “Route to noise-induced synchronization in an ensemble of uncoupled chaotic systems”, Phys. Rev. E, 81:3 (2010), 036201 | DOI
[12] Moskalenko O. I., Koronovskii A. A., Shurygina S. A., “Peremezhayuscheesya povedenie na granitse indutsirovannoi shumom sinkhronizatsii”, ZhTF, 81:9 (2011), 150–153
[13] Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V., “On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems”, Chaos, 31:8 (2021), 083106 | DOI
[14] Moskalenko O. I., Evstifeev E. V., “O suschestvovanii multistabilnosti vblizi granitsy obobschennoi sinkhronizatsii v odnonapravlenno svyazannykh sistemakh so slozhnoi topologiei attraktora”, Izvestiya vuzov. PND, 30:6 (2022), 676–684 | DOI
[15] Hramov A. E., Koronovskii A. A., Moskalenko O. I., “Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators?”, Phys. Lett. A, 354:5–6 (2006), 423–427 | DOI