Self-oscillating systems with controlled phase of external force
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 549-565.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to study self-oscillatory systems under adaptive external action. This refers to the situation when the phase of the external action additionally depends on the dynamical variable of the oscillator. In a review plan, the results are presented for the case of a linear damped oscillator. Two cases of self-oscillatory systems are studied: the van der Pol oscillator and an autonomous quasi-periodic generator with three-dimensional phase space. Methods. Methods of charts of dynamical regimes and charts of Lyapunov exponents are used, as well as the construction of phase portraits and stroboscopic sections. Results. In a review plan, the results are presented for the case of a linear damped oscillator. Two cases of self-oscillatory systems are studied: the van der Pol oscillator and an autonomous quasi-periodic generator with a three-dimensional phase space. The pictures of characteristic dynamical regimes are described. Scenarios for the development of multidimensional chaos are described. Illustrations are given of the influence of the control parameter, which is responsible for the degree of dependence of the phase on the oscillator variable, on the dynamics of the system at different frequencies of action. Conclusion. The taling into account of the dependence of the phase on a dynamical variable leads to an extension of the tongues of subharmonic resonances, which are weakly expressed in the classical van der Pol oscillator. This is especially noticeable for even resonances of periods 2 and 4. For the generator of quasi-periodic oscillations in the non-autonomous case, three-frequency tori are observed, their regions begin to dominate with an increase in the adaptivity parameter, displacing the tongues of resonant two-frequency tori. A variety of multidimensional chaos characterized by an additional Lyapunov exponent close to zero is discovered, the possibility of developing hyperchaos as a result of destruction is shown.
Keywords: non-autonomous oscillator, phase, Van der Pol oscillator, quasi-periodicity, chaos.
@article{IVP_2023_31_5_a1,
     author = {D. A. Krylosova and A. P. Kuznetsov and Yu. V. Sedova and N. V. Stankevich},
     title = {Self-oscillating systems with controlled phase of external force},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {549--565},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/}
}
TY  - JOUR
AU  - D. A. Krylosova
AU  - A. P. Kuznetsov
AU  - Yu. V. Sedova
AU  - N. V. Stankevich
TI  - Self-oscillating systems with controlled phase of external force
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 549
EP  - 565
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/
LA  - ru
ID  - IVP_2023_31_5_a1
ER  - 
%0 Journal Article
%A D. A. Krylosova
%A A. P. Kuznetsov
%A Yu. V. Sedova
%A N. V. Stankevich
%T Self-oscillating systems with controlled phase of external force
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 549-565
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/
%G ru
%F IVP_2023_31_5_a1
D. A. Krylosova; A. P. Kuznetsov; Yu. V. Sedova; N. V. Stankevich. Self-oscillating systems with controlled phase of external force. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 549-565. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/

[1] Best R. E., Phase-Locked Loops: Design, Simulation, and Applications, McGraw-Hill, 6th ed New York, 2007, 489 pp.

[2] Shalfeev V. D., Matrosov V. V., Nelineinaya dinamika sistem fazovoi sinkhronizatsii, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2013, 366 pp.

[3] Kuznetsov N. V., Leonov G. A., Nonlinear Mathematical Models of Phase-Locked Loops, Cambridge Scientific Publisher, 2014, 218 pp.

[4] Kuznetsov N. V., Belyaev Y. V., Styazhkina A. V., Tulaev A. T., Yuldashev M. V., Yuldashev R. V., “Effects of PLL architecture on MEMS gyroscope performance”, Gyroscopy and Navigation, 13:1 (2022), 44–52 | DOI

[5] Kuznetsov N. V., Lobachev M. Y., Yuldashev M. V., Yuldashev R. V., Tavazoei M. S., “The gardner problem on the lock-in range of second-order type 2 phase-locked loops”, IEEE Transactions on Automatic Control, 2023, 1–15 | DOI

[6] Ottesen J. T., “Modelling the dynamical baroreflex-feedback control”, Mathematical and Computer Modelling, 31:4–5 (2000), 167–173 | DOI

[7] Hall J. E., Guyton and Hall Textbook of Medical Physiology E-Book, Elsevier Health Sciences, 2015, 1147 pp.

[8] Seleznev E. P., Stankevich N. V., “Slozhnaya dinamika neavtonomnogo ostsillyatora s upravlyaemoi fazoi vneshnego vozdeistviya”, Pisma v ZhTF, 45:2 (2019), 59–62

[9] Krylosova D. A., Seleznev E. P., Stankevich N. V., “Dynamics of non-autonomous oscillator with a controlled phase and frequency of external forcing”, Chaos, Solitons Fractals, 134 (2020), 109716 | DOI

[10] Krylosova D., Seleznev E., Stankevich N., “The simplest oscillators with adaptive properties”, 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics, DCNAIR (07–09 September 2020, Innopolis, Russia), IEEE, 2020, 140–143 | DOI

[11] Polczyński K., Bednarek M., Awrejcewicz J., “Magnetic oscillator under excitation with controlled initial phase”, 16th International Conference Dynamical Systems – Theory and Applications (6–9 December 2021 Lódź), eds. Awrejcewicz J., Kaźmierczak M., Olejnik P., Mrozowski J., DSTA, 2021, 400–401

[12] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.

[13] Balanov A., Janson N., Postnov D., Sosnovtseva O., Synchronization: From Simple to Complex, Springer, Berlin, 2009, 426 pp. | DOI

[14] Landa P. S., Avtokolebaniya v sistemakh s konechnym chislom stepenei svobody, Nauka, M., 1980, 360 pp.

[15] Ding E. J., Hemmer P. C., “Winding numbers for the supercritical sine circle map”, Physica D: Nonlinear Phenomena, 32 (1988), 153–160 | DOI

[16] Ivankov N. Y., Kuznetsov S. P., “Complex periodic orbits, renormalization, and scaling for quasiperiodic golden-mean transition to chaos”, Phys. Rev. E, 63:4 (2001), 046210

[17] Kuznetsov A. P., Kuznetsov S. P., Mosekilde E., Stankevich N. V., “Generators of quasiperiodic oscillations with three-dimensional phase space”, The European Physical Journal Special Topics, 222:10 (2013), 2391–2398 | DOI

[18] Kuznetsov A. P., Kuznetsov S. P., Shchegoleva N. A., Stankevich N. V., “Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchronization and other phenomena”, Physica D: Nonlinear Phenomena, 398 (2019), 1–12 | DOI

[19] Matsumoto T., “Chaos in electronic circuits”, Proceedings of the IEEE, 75:8 (1987), 1033–1057 | DOI

[20] Anischenko V. S., Nikolaev S. M., “Generator kvaziperiodicheskikh kolebanii. Bifurkatsiya udvoeniya dvumernogo tora”, Pisma v ZhTF, 31:19 (2005), 88–94

[21] Anishchenko V., Nikolaev S., Kurths J., “Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions”, Phys. Rev. E, 73:5 (2006), 056202 | DOI

[22] Anishchenko V., Nikolaev S., Kurths J., “Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus”, Phys. Rev. E, 76:4 (2007), 046216

[23] Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V., “A simple autonomous quasiperiodic self-oscillator”, Communications in Nonlinear Science and Numerical Simulation, 15:6 (2010), 1676–1681 | DOI

[24] Kuznetsov A. P., Sedova Yu. V., “Vozdeistvie garmonicheskogo signala na generator kvaziperiodicheskikh kolebanii Anischenko–Astakhova”, Pisma v ZhTF, 48:4 (2022), 48–50 | DOI

[25] Stankevich N. V., Kuznetsov A. P., Kurths J., “Forced synchronization of quasiperiodic oscillations”, Communications in Nonlinear Science and Numerical Simulation, 20:1 (2015), 316–323 | DOI

[26] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Fazovaya dinamika vozbuzhdaemykh kvaziperiodicheskikh avtokolebatelnykh ostsillyatorov”, Izvestiya vuzov. PND, 18:4 (2010), 17–32 | DOI

[27] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatelnykh ostsillyatorov Van der Polya”, Nelineinaya dinamika, 7:3 (2011), 411–425 | DOI

[28] Vitolo R., Broer H., Simó C., “Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems”, Regular and Chaotic Dynamics, 16:1–2 (2011), 154–184 | DOI

[29] Broer H., Simó C., Vitolo R., “Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing”, Nonlinearity, 15:4 (2002), 1205–1267 | DOI

[30] Broer H. W., Simó C., Vitolo R., “Chaos and quasi-periodicity in diffeomorphisms of the solid torus”, Discrete and Continuous Dynamical Systems - B, 14:3 (2010), 871–905 | DOI

[31] Stankevich N. \hspace{-1pt}V., Shchegoleva N. \hspace{-1pt}A., Sataev I. \hspace{-1pt}R., Kuznetsov A. \hspace{-1pt}P., “Three-dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators”, Journal of Computational and Nonlinear Dynamics, 15:11 (2020), 111001 | DOI

[32] Grines E. A., Kazakov A., Sataev I. R., “On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:9 (2022), 093105 | DOI

[33] Karatetskaia E., Shykhmamedov A., Kazakov A., “Shilnikov attractors in three-dimensional orientation-reversing maps”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:1 (2021), 011102 | DOI

[34] Kuznetsov A. P., Sedova Y. V., Stankevich N. V., “Coupled systems with quasi-periodic and chaotic dynamics”, Chaos, Solitons Fractals, 169 (2023), 113278