Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_5_a1, author = {D. A. Krylosova and A. P. Kuznetsov and Yu. V. Sedova and N. V. Stankevich}, title = {Self-oscillating systems with controlled phase of external force}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {549--565}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/} }
TY - JOUR AU - D. A. Krylosova AU - A. P. Kuznetsov AU - Yu. V. Sedova AU - N. V. Stankevich TI - Self-oscillating systems with controlled phase of external force JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 549 EP - 565 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/ LA - ru ID - IVP_2023_31_5_a1 ER -
%0 Journal Article %A D. A. Krylosova %A A. P. Kuznetsov %A Yu. V. Sedova %A N. V. Stankevich %T Self-oscillating systems with controlled phase of external force %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 549-565 %V 31 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/ %G ru %F IVP_2023_31_5_a1
D. A. Krylosova; A. P. Kuznetsov; Yu. V. Sedova; N. V. Stankevich. Self-oscillating systems with controlled phase of external force. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 549-565. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a1/
[1] Best R. E., Phase-Locked Loops: Design, Simulation, and Applications, McGraw-Hill, 6th ed New York, 2007, 489 pp.
[2] Shalfeev V. D., Matrosov V. V., Nelineinaya dinamika sistem fazovoi sinkhronizatsii, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2013, 366 pp.
[3] Kuznetsov N. V., Leonov G. A., Nonlinear Mathematical Models of Phase-Locked Loops, Cambridge Scientific Publisher, 2014, 218 pp.
[4] Kuznetsov N. V., Belyaev Y. V., Styazhkina A. V., Tulaev A. T., Yuldashev M. V., Yuldashev R. V., “Effects of PLL architecture on MEMS gyroscope performance”, Gyroscopy and Navigation, 13:1 (2022), 44–52 | DOI
[5] Kuznetsov N. V., Lobachev M. Y., Yuldashev M. V., Yuldashev R. V., Tavazoei M. S., “The gardner problem on the lock-in range of second-order type 2 phase-locked loops”, IEEE Transactions on Automatic Control, 2023, 1–15 | DOI
[6] Ottesen J. T., “Modelling the dynamical baroreflex-feedback control”, Mathematical and Computer Modelling, 31:4–5 (2000), 167–173 | DOI
[7] Hall J. E., Guyton and Hall Textbook of Medical Physiology E-Book, Elsevier Health Sciences, 2015, 1147 pp.
[8] Seleznev E. P., Stankevich N. V., “Slozhnaya dinamika neavtonomnogo ostsillyatora s upravlyaemoi fazoi vneshnego vozdeistviya”, Pisma v ZhTF, 45:2 (2019), 59–62
[9] Krylosova D. A., Seleznev E. P., Stankevich N. V., “Dynamics of non-autonomous oscillator with a controlled phase and frequency of external forcing”, Chaos, Solitons Fractals, 134 (2020), 109716 | DOI
[10] Krylosova D., Seleznev E., Stankevich N., “The simplest oscillators with adaptive properties”, 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics, DCNAIR (07–09 September 2020, Innopolis, Russia), IEEE, 2020, 140–143 | DOI
[11] Polczyński K., Bednarek M., Awrejcewicz J., “Magnetic oscillator under excitation with controlled initial phase”, 16th International Conference Dynamical Systems – Theory and Applications (6–9 December 2021 Lódź), eds. Awrejcewicz J., Kaźmierczak M., Olejnik P., Mrozowski J., DSTA, 2021, 400–401
[12] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp.
[13] Balanov A., Janson N., Postnov D., Sosnovtseva O., Synchronization: From Simple to Complex, Springer, Berlin, 2009, 426 pp. | DOI
[14] Landa P. S., Avtokolebaniya v sistemakh s konechnym chislom stepenei svobody, Nauka, M., 1980, 360 pp.
[15] Ding E. J., Hemmer P. C., “Winding numbers for the supercritical sine circle map”, Physica D: Nonlinear Phenomena, 32 (1988), 153–160 | DOI
[16] Ivankov N. Y., Kuznetsov S. P., “Complex periodic orbits, renormalization, and scaling for quasiperiodic golden-mean transition to chaos”, Phys. Rev. E, 63:4 (2001), 046210
[17] Kuznetsov A. P., Kuznetsov S. P., Mosekilde E., Stankevich N. V., “Generators of quasiperiodic oscillations with three-dimensional phase space”, The European Physical Journal Special Topics, 222:10 (2013), 2391–2398 | DOI
[18] Kuznetsov A. P., Kuznetsov S. P., Shchegoleva N. A., Stankevich N. V., “Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchronization and other phenomena”, Physica D: Nonlinear Phenomena, 398 (2019), 1–12 | DOI
[19] Matsumoto T., “Chaos in electronic circuits”, Proceedings of the IEEE, 75:8 (1987), 1033–1057 | DOI
[20] Anischenko V. S., Nikolaev S. M., “Generator kvaziperiodicheskikh kolebanii. Bifurkatsiya udvoeniya dvumernogo tora”, Pisma v ZhTF, 31:19 (2005), 88–94
[21] Anishchenko V., Nikolaev S., Kurths J., “Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions”, Phys. Rev. E, 73:5 (2006), 056202 | DOI
[22] Anishchenko V., Nikolaev S., Kurths J., “Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus”, Phys. Rev. E, 76:4 (2007), 046216
[23] Kuznetsov A. P., Kuznetsov S. P., Stankevich N. V., “A simple autonomous quasiperiodic self-oscillator”, Communications in Nonlinear Science and Numerical Simulation, 15:6 (2010), 1676–1681 | DOI
[24] Kuznetsov A. P., Sedova Yu. V., “Vozdeistvie garmonicheskogo signala na generator kvaziperiodicheskikh kolebanii Anischenko–Astakhova”, Pisma v ZhTF, 48:4 (2022), 48–50 | DOI
[25] Stankevich N. V., Kuznetsov A. P., Kurths J., “Forced synchronization of quasiperiodic oscillations”, Communications in Nonlinear Science and Numerical Simulation, 20:1 (2015), 316–323 | DOI
[26] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Fazovaya dinamika vozbuzhdaemykh kvaziperiodicheskikh avtokolebatelnykh ostsillyatorov”, Izvestiya vuzov. PND, 18:4 (2010), 17–32 | DOI
[27] Kuznetsov A. P., Sataev I. R., Tyuryukina L. V., “Vynuzhdennaya sinkhronizatsiya dvukh svyazannykh avtokolebatelnykh ostsillyatorov Van der Polya”, Nelineinaya dinamika, 7:3 (2011), 411–425 | DOI
[28] Vitolo R., Broer H., Simó C., “Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems”, Regular and Chaotic Dynamics, 16:1–2 (2011), 154–184 | DOI
[29] Broer H., Simó C., Vitolo R., “Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing”, Nonlinearity, 15:4 (2002), 1205–1267 | DOI
[30] Broer H. W., Simó C., Vitolo R., “Chaos and quasi-periodicity in diffeomorphisms of the solid torus”, Discrete and Continuous Dynamical Systems - B, 14:3 (2010), 871–905 | DOI
[31] Stankevich N. \hspace{-1pt}V., Shchegoleva N. \hspace{-1pt}A., Sataev I. \hspace{-1pt}R., Kuznetsov A. \hspace{-1pt}P., “Three-dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators”, Journal of Computational and Nonlinear Dynamics, 15:11 (2020), 111001 | DOI
[32] Grines E. A., Kazakov A., Sataev I. R., “On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:9 (2022), 093105 | DOI
[33] Karatetskaia E., Shykhmamedov A., Kazakov A., “Shilnikov attractors in three-dimensional orientation-reversing maps”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:1 (2021), 011102 | DOI
[34] Kuznetsov A. P., Sedova Y. V., Stankevich N. V., “Coupled systems with quasi-periodic and chaotic dynamics”, Chaos, Solitons Fractals, 169 (2023), 113278