Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 523-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of this work is the study of local dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings. From a discrete model describing the dynamics of a great number of coupled oscillators, a transition has been made to a nonlinear integro-differential equation, continuously depending on time and space variable. A class of full-coupled systems has been considered. The main assumption is that the amount of delay in the couplings is large enough. This assumption opens the way to the use of special asymptotic methods of study. The parameters under which the critical case is realized in the problem of the equilibrium state stability have been distinguished. It is shown that they have infinite dimension. The analogues of normal forms - nonlinear boundary value problems of Ginzburg-Landau type have been constructed. In some cases, these boundary value problems contain integral components too. Their nonlocal dynamics describes the behavior of all solutions of the original equations in the balance state neighbourhood. Methods. As applied to the considered problems, methods of constructing quasinormal forms on central manifolds are developed. An algorithm for constructing the asymptotics of solutions based on the use of quasinormal forms for determining slowly varying amplitudes has been created. Results. Quasinormal forms that determine the dynamics of the original boundary value problem have been constructed. The dominant terms of asymptotic approximations for solutions of the considered chains have been obtained. On the basis of the given statements, a number of interesting dynamical effects have been revealed. For example, an infinite alternation of direct and reverse bifurcations when the delay coefficient increases. Their distinguishing feature is that they have two or three spatial variables.
Keywords: boundary value problem, dynamics, delay, oscillators, normal form, stability.
@article{IVP_2023_31_4_a8,
     author = {S. A. Kaschenko},
     title = {Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {523--542},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/}
}
TY  - JOUR
AU  - S. A. Kaschenko
TI  - Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 523
EP  - 542
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/
LA  - ru
ID  - IVP_2023_31_4_a8
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%T Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 523-542
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/
%G ru
%F IVP_2023_31_4_a8
S. A. Kaschenko. Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 523-542. http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/

[1] Kuznetsov A. P., Kuznetsov S. P., Sataev I. R., Turukina L. V., “About Landau–Hopf scenario in a system of coupled self-oscillators”, Physics Letters A, 377:45–48 (2013), 3291–3295 | DOI | MR | Zbl

[2] Osipov G. V., Pikovsky A. S., Rosenblum M. G., Kurths J., “Phase synchronization effects in a lattice of nonidentical Rössler oscillators”, Phys. Rev. E, 55:3 (1997), 2353–2361 | DOI | MR

[3] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001, 411 pp. | DOI | MR | Zbl

[4] Dodla R., Sen A., Johnston G. L., “Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators”, Phys. Rev. E, 69:5 (2004), 056217 | DOI | MR

[5] Williams C. R. S., Sorrentino F., Murphy T. E., Roy R., “Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23:4 (2013), 043117 | DOI | MR | Zbl

[6] Rao R., Lin Z., Ai X., Wu J., “Synchronization of epidemic systems with Neumann boundary value under delayed impulse”, Mathematics, 10:12 (2022), 2064 | DOI

[7] Van der Sande G., Soriano M. C., Fischer I., Mirasso C. R., “Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators”, Phys. Rev. E, 77:5 (2008), 055202 | DOI

[8] Klinshov V. V., Nekorkin V. I., “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, Uspekhi fizicheskikh nauk, 183:12 (2013), 1323–1336 | DOI

[9] Heinrich G., Ludwig M., Qian J., Kubala B., Marquardt F., “Collective dynamics in optomechanical arrays”, Phys. Rev. Lett., 107:4 (2011), 043603 | DOI

[10] Zhang M., Wiederhecker G. S., Manipatruni S., Barnard A., McEuen P., Lipson M., “Synchronization of micromechanical oscillators using light”, Phys. Rev. Lett., 109:23 (2012), 233906 | DOI

[11] Lee T. E., Sadeghpour H. R., “Quantum synchronization of quantum van der Pol oscillators with trapped ions”, Phys. Rev. Lett., 111:23 (2013), 234101 | DOI

[12] Yanchuk S., Wolfrum M., “Instabilities of stationary states in lasers with long-delay optical feedback”, SIAM Journal on Applied Dynamical Systems, 9:2 (2010), 519–535 | DOI | MR | Zbl

[13] Grigorieva E. V., Haken H., Kashchenko S. A., “Complexity near equilibrium in model of lasers with delayed optoelectronic feedback”, 1998 International Symposium on Nonlinear Theory and its Applications, NOLTA’98 (14-17 September 1998, Crans-Montana, Switzerland), NOLTA Society, 1998, 495–498

[14] Kashchenko S. A., “Quasinormal forms for chains of coupled logistic equations with delay”, Mathematics, 10:15 (2022), 2648 | DOI | MR

[15] Kaschenko S. A., “Dinamika tsepochki logisticheskikh uravnenii c zapazdyvaniem i s antidiffuzionnoi svyazyu”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 502:1 (2022), 23–27 | DOI | Zbl

[16] Thompson J. M. T., Stewart H. B., Nonlinear Dynamics and Chaos, 2, Wiley, New York, 2002, 460 pp. | MR | Zbl

[17] Kashchenko S. A., “Dynamics of advectively coupled Van der Pol equations chain”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:3 (2021), 033147 | DOI | MR | Zbl

[18] Kanter I., Zigzag M., Englert A., Geissler F., Kinzel W., “Synchronization of unidirectional time delay chaotic networks and the greatest common divisor”, Europhysics Letters, 93:6 (2011), 60003 | DOI

[19] Rosin D. P., Rontani D., Gauthier D. J., Schöll E., “Control of synchronization patterns in neural-like Boolean networks”, Phys. Rev. Lett., 110:10 (2013), 104102 | DOI

[20] Yanchuk S., Perlikowski P., Popovych O. V., Tass P. A., “Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21:4 (2011), 047511 | DOI

[21] Klinshov V., Nekorkin V., “Synchronization in networks of pulse oscillators with time-delay coupling”, Cybernetics and Physics, 1:2 (2012), 106–112

[22] Klinshov V. V., “Kollektivnaya dinamika setei aktivnykh elementov s impulsnymi svyazyami: Obzor”, Izvestiya vuzov. PND, 28:5 (2020), 465–490 | DOI

[23] Hale J. K., Theory of Functional Differential Equations, Springer, 2nd edition New York, 1977, 366 pp. | DOI | MR | Zbl

[24] Hartman P., Ordinary Differential Equations, Wiley, New York, 1965, 632 pp. | MR

[25] Marsden J. E., McCracken M. F., The Hopf Bifurcation and Its Applications, Springer, New York, 1976, 408 pp. | DOI | MR | Zbl

[26] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | Zbl

[27] Kaschenko S. A., “Normalization in the systems with small diffusion”, International Journal of Bifurcation and Chaos, 6:6 (1996), 1093–1109 | DOI | MR | Zbl

[28] Kaschenko S. A., “Uravnenie Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:3 (1998), 457–465 | MR | Zbl

[29] Kaschenko I. S., Kaschenko S. A., “Lokalnaya dinamika sistem raznostnykh i differentsialno-raznostnykh uravnenii”, Izvestiya vuzov. PND, 22:1 (2014), 71–92 | DOI | Zbl

[30] Kaschenko S. A., “Bifurkatsii v okrestnosti tsikla pri malykh vozmuscheniyakh s bolshim zapazdyvaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:5 (2000), 693–702 | MR | Zbl

[31] Kashchenko S. A., “Van der Pol equation with a large feedback delay”, Mathematics, 11:6 (2023), 1301 | DOI

[32] Grigorieva E. V., Kashchenko S. A., “Rectangular structures in the model of an optoelectronic oscillator with delay”, Physica D: Nonlinear Phenomena, 417 (2021), 132818 | DOI | MR | Zbl

[33] Grigoreva E. V., Kaschenko S. A., “Lokalnaya dinamika modeli tsepochki lazerov s optoelektronnoi zapazdyvayuschei odnonapravlennoi svyazyu”, Izvestiya vuzov. PND, 30:2 (2022), 189–207 | DOI

[34] Kaschenko S. A., “Kvazinormalnye formy v zadache o kolebaniyakh peshekhodnykh mostov”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 506:1 (2022), 49–53 | DOI | Zbl

[35] Kashchenko I., Kaschenko S., “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonlinear Phenomena in Complex Systems, 22:4 (2019), 407–412 | DOI | Zbl