Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_4_a8, author = {S. A. Kaschenko}, title = {Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {523--542}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/} }
TY - JOUR AU - S. A. Kaschenko TI - Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 523 EP - 542 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/ LA - ru ID - IVP_2023_31_4_a8 ER -
%0 Journal Article %A S. A. Kaschenko %T Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 523-542 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/ %G ru %F IVP_2023_31_4_a8
S. A. Kaschenko. Dynamics of full-coupled chains of a great number of oscillators with a large delay in couplings. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 523-542. http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a8/
[1] Kuznetsov A. P., Kuznetsov S. P., Sataev I. R., Turukina L. V., “About Landau–Hopf scenario in a system of coupled self-oscillators”, Physics Letters A, 377:45–48 (2013), 3291–3295 | DOI | MR | Zbl
[2] Osipov G. V., Pikovsky A. S., Rosenblum M. G., Kurths J., “Phase synchronization effects in a lattice of nonidentical Rössler oscillators”, Phys. Rev. E, 55:3 (1997), 2353–2361 | DOI | MR
[3] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001, 411 pp. | DOI | MR | Zbl
[4] Dodla R., Sen A., Johnston G. L., “Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators”, Phys. Rev. E, 69:5 (2004), 056217 | DOI | MR
[5] Williams C. R. S., Sorrentino F., Murphy T. E., Roy R., “Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23:4 (2013), 043117 | DOI | MR | Zbl
[6] Rao R., Lin Z., Ai X., Wu J., “Synchronization of epidemic systems with Neumann boundary value under delayed impulse”, Mathematics, 10:12 (2022), 2064 | DOI
[7] Van der Sande G., Soriano M. C., Fischer I., Mirasso C. R., “Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators”, Phys. Rev. E, 77:5 (2008), 055202 | DOI
[8] Klinshov V. V., Nekorkin V. I., “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, Uspekhi fizicheskikh nauk, 183:12 (2013), 1323–1336 | DOI
[9] Heinrich G., Ludwig M., Qian J., Kubala B., Marquardt F., “Collective dynamics in optomechanical arrays”, Phys. Rev. Lett., 107:4 (2011), 043603 | DOI
[10] Zhang M., Wiederhecker G. S., Manipatruni S., Barnard A., McEuen P., Lipson M., “Synchronization of micromechanical oscillators using light”, Phys. Rev. Lett., 109:23 (2012), 233906 | DOI
[11] Lee T. E., Sadeghpour H. R., “Quantum synchronization of quantum van der Pol oscillators with trapped ions”, Phys. Rev. Lett., 111:23 (2013), 234101 | DOI
[12] Yanchuk S., Wolfrum M., “Instabilities of stationary states in lasers with long-delay optical feedback”, SIAM Journal on Applied Dynamical Systems, 9:2 (2010), 519–535 | DOI | MR | Zbl
[13] Grigorieva E. V., Haken H., Kashchenko S. A., “Complexity near equilibrium in model of lasers with delayed optoelectronic feedback”, 1998 International Symposium on Nonlinear Theory and its Applications, NOLTA’98 (14-17 September 1998, Crans-Montana, Switzerland), NOLTA Society, 1998, 495–498
[14] Kashchenko S. A., “Quasinormal forms for chains of coupled logistic equations with delay”, Mathematics, 10:15 (2022), 2648 | DOI | MR
[15] Kaschenko S. A., “Dinamika tsepochki logisticheskikh uravnenii c zapazdyvaniem i s antidiffuzionnoi svyazyu”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 502:1 (2022), 23–27 | DOI | Zbl
[16] Thompson J. M. T., Stewart H. B., Nonlinear Dynamics and Chaos, 2, Wiley, New York, 2002, 460 pp. | MR | Zbl
[17] Kashchenko S. A., “Dynamics of advectively coupled Van der Pol equations chain”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:3 (2021), 033147 | DOI | MR | Zbl
[18] Kanter I., Zigzag M., Englert A., Geissler F., Kinzel W., “Synchronization of unidirectional time delay chaotic networks and the greatest common divisor”, Europhysics Letters, 93:6 (2011), 60003 | DOI
[19] Rosin D. P., Rontani D., Gauthier D. J., Schöll E., “Control of synchronization patterns in neural-like Boolean networks”, Phys. Rev. Lett., 110:10 (2013), 104102 | DOI
[20] Yanchuk S., Perlikowski P., Popovych O. V., Tass P. A., “Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21:4 (2011), 047511 | DOI
[21] Klinshov V., Nekorkin V., “Synchronization in networks of pulse oscillators with time-delay coupling”, Cybernetics and Physics, 1:2 (2012), 106–112
[22] Klinshov V. V., “Kollektivnaya dinamika setei aktivnykh elementov s impulsnymi svyazyami: Obzor”, Izvestiya vuzov. PND, 28:5 (2020), 465–490 | DOI
[23] Hale J. K., Theory of Functional Differential Equations, Springer, 2nd edition New York, 1977, 366 pp. | DOI | MR | Zbl
[24] Hartman P., Ordinary Differential Equations, Wiley, New York, 1965, 632 pp. | MR
[25] Marsden J. E., McCracken M. F., The Hopf Bifurcation and Its Applications, Springer, New York, 1976, 408 pp. | DOI | MR | Zbl
[26] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | Zbl
[27] Kaschenko S. A., “Normalization in the systems with small diffusion”, International Journal of Bifurcation and Chaos, 6:6 (1996), 1093–1109 | DOI | MR | Zbl
[28] Kaschenko S. A., “Uravnenie Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:3 (1998), 457–465 | MR | Zbl
[29] Kaschenko I. S., Kaschenko S. A., “Lokalnaya dinamika sistem raznostnykh i differentsialno-raznostnykh uravnenii”, Izvestiya vuzov. PND, 22:1 (2014), 71–92 | DOI | Zbl
[30] Kaschenko S. A., “Bifurkatsii v okrestnosti tsikla pri malykh vozmuscheniyakh s bolshim zapazdyvaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:5 (2000), 693–702 | MR | Zbl
[31] Kashchenko S. A., “Van der Pol equation with a large feedback delay”, Mathematics, 11:6 (2023), 1301 | DOI
[32] Grigorieva E. V., Kashchenko S. A., “Rectangular structures in the model of an optoelectronic oscillator with delay”, Physica D: Nonlinear Phenomena, 417 (2021), 132818 | DOI | MR | Zbl
[33] Grigoreva E. V., Kaschenko S. A., “Lokalnaya dinamika modeli tsepochki lazerov s optoelektronnoi zapazdyvayuschei odnonapravlennoi svyazyu”, Izvestiya vuzov. PND, 30:2 (2022), 189–207 | DOI
[34] Kaschenko S. A., “Kvazinormalnye formy v zadache o kolebaniyakh peshekhodnykh mostov”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 506:1 (2022), 49–53 | DOI | Zbl
[35] Kashchenko I., Kaschenko S., “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonlinear Phenomena in Complex Systems, 22:4 (2019), 407–412 | DOI | Zbl