Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_4_a7, author = {S. V. Revina and A. S. Ryabov}, title = {Turing instability in the one-parameter {Gierer-Meinhardt} system}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {501--522}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a7/} }
TY - JOUR AU - S. V. Revina AU - A. S. Ryabov TI - Turing instability in the one-parameter Gierer-Meinhardt system JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 501 EP - 522 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a7/ LA - ru ID - IVP_2023_31_4_a7 ER -
S. V. Revina; A. S. Ryabov. Turing instability in the one-parameter Gierer-Meinhardt system. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 501-522. http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a7/
[1] Wei J., Winter M., Mathematical Aspects of Pattern Formation in Biological Systems, Springer, London, 2014, 319 pp. | DOI | MR | Zbl
[2] Kostin V. A., Osipov G. V., “Neustoichivost odnorodnogo sostoyaniya i dvukhdomennye prostranstvenno-vremennye struktury v reaktsionno-diffuzionnykh sistemakh s globalnoi svyazyu”, Izvestiya vuzov. PND, 29:1 (2021), 186–207 | DOI | MR
[3] Tsibulin V. G., Kha T. D., Zelenchuk P. A., “Nelineinaya dinamika sistemy khischnik–zhertva na neodnorodnom areale i stsenarii lokalnogo vzaimodeistviya vidov”, Izvestiya vuzov. PND, 29:5 (2021), 751–764 | DOI
[4] Kazarnikov A. V., Revina S. V., “Vozniknovenie avtokolebanii v sisteme Releya s diffuziei”, Vestnik YuUrGU. Ser. «Matematicheskoe modelirovanie i programmirovanie», 9:2 (2016), 16–28 | DOI | Zbl
[5] Kazarnikov A. V., Revina S. V., “Asimptotika statsionarnykh reshenii v sisteme Releya s diffuziei”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2016, no. 3 (191), 13–19 | DOI
[6] Kazarnikov A. V., Revina S. V., “Bifurkatsii v sisteme Releya s diffuziei”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 27:4 (2017), 499–514 | DOI | MR | Zbl
[7] Kazarnikov A. V., Revina S. V., “Monotonnaya neustoichivost v sisteme FittsKhyu-Nagumo s diffuziei”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2018, no. 4 (200), 18–24 | DOI
[8] Turing A. M., “The chemical basis of morphogenesis”, Phil. Trans. R. Soc. Lond. B, 237:641 (1952), 37–72 | DOI | MR | Zbl
[9] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, 3, Springer, New York, 2003, 814 pp. | DOI | MR
[10] Revina S. V., Lysenko S. A., “Dostatochnye usloviya neustoichivosti Tyuringa dlya sistemy Shnakenberga”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 31:3 (2021), 424–442 | DOI | MR | Zbl
[11] Revina S. V., “Oblast diffuzionnoi neustoichivosti dlya sistem parabolicheskikh uravnenii”, Vladikavkazskii matematicheskii zhurnal, 24:4 (2022), 117–126 | DOI | MR
[12] Gierer A., Meinhardt H., “A theory of biological pattern formation”, Kybernetik, 12:1 (1972), 30–39 | DOI
[13] Meinhardt H., “Models of biological pattern formation: From elementary steps to the organization of embryonic axes”, Current Topics in Developmental Biology, 81 (2008), 1–63 | DOI
[14] Gomez D., Ward M. J., Wei J., “An asymptotic analysis of localized three-dimensional spot patterns for the Gierer\hspace{1pt}–\hspace{1pt}Meinhardt model: Existence, linear stability, and slow dynamics”, SIAM Journal on Applied Mathematics, 81:2 (2021), 378–406 | DOI | MR | Zbl
[15] Chen M., Wu R., Chen L., “Pattern dynamics in a diffusive Gierer\hspace{1pt}–\hspace{1pt}Meinhardt model”, International Journal of Bifurcation and Chaos, 30:12 (2020), 2030035 | DOI | MR | Zbl
[16] Yudovich V. I., “Primer poteri ustoichivosti i rozhdeniya vtorichnogo techeniya zhidkosti v zamknutom sosude”, Matematicheskii sbornik (novaya seriya), 74(116):4 (1967), 565–579
[17] Yudovich V. I., “Issledovanie avtokolebanii sploshnoi sredy, voznikayuschikh pri potere ustoichivosti statsionarnogo rezhima”, Prikladnaya matematika i mekhanika, 36:3 (1972), 450–459 | Zbl
[18] Revina S. V., “Long wavelength asymptotics of self-oscillations of viscous incompressible fluid”, Operator Theory and Differential Equations. Trends in Mathematics., eds. Kusraev A. G., Totieva Z. D., Birkhäuser, Cham, 2021, 185–203 | DOI | MR | Zbl