Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_4_a6, author = {V. M. Moskvitin and N. I. Semenova}, title = {Noise influence on recurrent neural network with nonlinear neurons}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {484--500}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a6/} }
TY - JOUR AU - V. M. Moskvitin AU - N. I. Semenova TI - Noise influence on recurrent neural network with nonlinear neurons JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 484 EP - 500 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a6/ LA - ru ID - IVP_2023_31_4_a6 ER -
V. M. Moskvitin; N. I. Semenova. Noise influence on recurrent neural network with nonlinear neurons. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 484-500. http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a6/
[1] LeCun Y., Bengio Y., Hinton G., “Deep learning”, Nature, 521:7553 (2015), 436–444 | DOI | MR
[2] Krizhevsky A., Sutskever I., Hinton G. E., “ImageNet classification with deep convolutional neural networks”, Commun. ACM, 60:6 (2017), 84–90 | DOI
[3] Maturana D., Scherer S., “VoxNet: A 3D Convolutional Neural Network for real-time object recognition”, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (28 September 2015 - 02 October 2015, Hamburg, Germany), IEEE, New York, 2015, 922–928 | DOI
[4] Graves A., Mohamed A.-R., Hinton G., “Speech recognition with deep recurrent neural networks”, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (26-31 May 2013, Vancouver, BC, Canada), IEEE, New York, 2013, 6645–6649 | DOI
[5] Kar S., Moura J. M. F., “Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise”, IEEE Transactions on Signal Processing, 57:1 (2009), 355–369 | DOI | MR | Zbl
[6] Mandic D. P., Chambers J. A., Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability, Wiley, New York, 2001, 304 pp. | DOI
[7] Bailador G., Roggen D., Tröster G., Triviño G., “Real time gesture recognition using continuous time recurrent neural networks”, 2nd International ICST Conference on Body Area Networks (11th–13th Jun 2007, Florence, Italy), ICST, 2007, 8 | DOI
[8] Hasler J., Marr H., “Finding a roadmap to achieve large neuromorphic hardware systems”, Frontiers in Neuroscience, 7 (2013), 118 | DOI
[9] Gupta S., Agrawal A., Gopalakrishnan K., Narayanan P., “Deep learning with limited numerical precision”, Proceedings of the 32nd International Conference on International Conference on Machine Learning (6-11 July 2015, Lille, France), v. 37, JMLR, 2015, 1737–1746.
[10] Karniadakis G. E., Kevrekidis I. G., Lu L., Perdikaris P., Wang S., Yang L., “Physics-informed machine learning”, Nature Reviews Physics, 3:6 (2021), 422–440 | DOI
[11] Brunner D., Soriano M. C., Mirasso C. R., Fischer I., “Parallel photonic information processing at gigabyte per second data rates using transient states”, Nature Communications, 4:1 (2013), 1364 | DOI
[12] Tuma T., Pantazi A., {Le Gallo} M., Sebastian A., Eleftheriou E., “Stochastic phase-change neurons”, Nature Nanotechnology, 11:8 (2016), 693–699 | DOI
[13] Torrejon J., Riou M., Araujo F. A., Tsunegi S., Khalsa G., Querlioz D., Bortolotti P., Cros V., Yakushiji K., Fukushima A., Kubota H., Yuasa S., Stiles M. D., Grollier J., “Neuromorphic computing with nanoscale spintronic oscillators”, Nature, 547:7664 (2017), 428–431 | DOI
[14] Psaltis D., Brady D., Gu X.-G., Lin S., “Holography in artificial neural networks”, Nature, 343:6256 (1990), 325–330 | DOI
[15] Bueno J., Maktoobi S., Froehly L., Fischer I., Jacquot M., Larger L., Brunner D., “Reinforcement learning in a large-scale photonic recurrent neural network”, Optica, 5:6 (2018), 756–760 | DOI | MR
[16] Lin X., Rivenson Y., Yardimci N. T., Veli M., Luo Y., Jarrahi M., Ozcan A., “All-optical machine learning using diffractive deep neural networks”, Science, 361:6406 (2018), 1004–1008 | DOI | MR | Zbl
[17] Shen Y., Harris N. C., Skirlo S., Prabhu M., {Baehr-Jones} T., Hochberg M., Sun X., Zhao S., Larochelle H., Englund D., Soljačić M., “Deep learning with coherent nanophotonic circuits”, Nature Photonics, 11:93 (2017), 441–446 | DOI
[18] Tait A. N., {de Lima} T. F., Zhou E., Wu A. X., Nahmias M. A., Shastri B. J., Prucnal P. R., “Neuromorphic photonic networks using silicon photonic weight banks”, Scientific Reports, 7:1 (2017), 7430 | DOI
[19] Moughames J., Porte X., Thiel M., Ulliac G., Larger L., Jacquot M., Kadic M., Brunner D., “Three-dimensional waveguide interconnects for scalable integration of photonic neural networks”, Optica, 7:6 (2020), 640–646 | DOI
[20] Dinc N. U., Psaltis D., Brunner D., “Optical neural networks The 3D connection”, Photoniques, 2020, no. 104, 34–38 | DOI
[21] Moughames J., Porte X., Larger L., Jacquot M., Kadic M., Brunner D., “3D printed multimode-splitters for photonic interconnects”, Opt. Mater. Express, 10:11 (2020), 2952–2961 | DOI
[22] Semenova N., Porte X., Andreoli L., Jacquot M., Larger L., Brunner D., “Fundamental aspects of noise in analog-hardware neural networks”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:10 (2019), 103128 | DOI | MR | Zbl
[23] Semenova N., Larger L., Brunner D., “Understanding and mitigating noise in trained deep neural networks”, Neural Networks, 146 (2022), 151–160 | DOI
[24] Semenova N., Brunner D., “Noise-mitigation strategies in physical feedforward neural networks”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32:6 (2022), 061106 | DOI | MR
[25] Jaeger H., Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach GMD-Report 159, German National Research Center for Information Technology, Bonn, 2002, 48 pp.
[26] Prokhorov D., “Echo state networks: appeal and challenges”, Proceedings 2005 IEEE International Joint Conference on Neural Networks (31 July 2005 - 04 August 2005, Montreal, QC, Canada), v. 3, IEEE, New York, 2005, 1463–1466 | DOI
[27] Cerina L., Santambrogio M. D., Franco G., Gallicchio C., Micheli A., “EchoBay: Design and optimization of echo state networks under memory and time constraints”, ACM Transactions on Architecture and Code Optimization, 17:3 (2020), 1–24 | DOI
[28] Lukoševičius M., Jaeger H., “Reservoir computing approaches to recurrent neural network training”, Computer Science Review, 3:3 (2009), 127–149 | DOI | MR | Zbl