Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_4_a5, author = {V. V. Aristov and O. V. Kubryak and I. V. Stepanyan}, title = {Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {469--483}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a5/} }
TY - JOUR AU - V. V. Aristov AU - O. V. Kubryak AU - I. V. Stepanyan TI - Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 469 EP - 483 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a5/ LA - ru ID - IVP_2023_31_4_a5 ER -
%0 Journal Article %A V. V. Aristov %A O. V. Kubryak %A I. V. Stepanyan %T Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 469-483 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a5/ %G ru %F IVP_2023_31_4_a5
V. V. Aristov; O. V. Kubryak; I. V. Stepanyan. Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 469-483. http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a5/
[1] Freeman W. J., “W.G. Walter: The living brain”, Brain Theory, eds. Palm G., Aertsen A., Springer, Berlin, Heidelberg, 1986, 237–238 | DOI | MR
[2] Fontanillo Lopez C. A., Li G., Zhang D., “Beyond technologies of electroencephalography-based brain-computer interfaces: A systematic review from commercial and ethical aspects”, Front. Neurosci., 14 (2020), 611130 | DOI
[3] Craik A., He Y., Contreras-Vidal J. L., “Deep learning for electroencephalogram (EEG) classification tasks: a review”, J. Neural Eng, 16:3 (2019), 031001 | DOI
[4] Douibi K., Le Bars S., Lemontey A., Nag L., Balp R., Breda G., “Toward EEG-based BCI applications for industry 4.0: Challenges and possible applications”, Front. Hum. Neurosci., 15 (2021), 705064 | DOI
[5] Alimardani M., Hiraki K., “Passive brain-computer interfaces for enhanced human-robot interaction”, Front. Robot. AI, 7 (2020), 125 | DOI
[6] Batista A., “Brain-computer interfaces for basic neuroscience”, Handbook of Clinical Neurology, 168 (2020), 233–247 | DOI
[7] Lotte F., Bougrain L., Cichocki A., Clerc M., Congedo M., Rakotomamonjy A., Yger F., “A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update”, J. Neural Eng, 15:3 (2018), 031005 | DOI
[8] Schwilden H., “Concepts of EEG processing: from power spectrum to bispectrum, fractals, entropies and all that”, Best Practice Research Clinical Anaesthesiology, 20:1 (2006), 31–48 | DOI
[9] Anokhin K. V., “Kognitom: v poiskakh fundamentalnoi neironauchnoi teorii soznaniya”, Zhurnal vysshei nervnoi deyatelnosti im. I. P. Pavlova, 71:1 (2021), 39–71 | DOI | MR
[10] Pobachenko S. V., Kolesnik A. G., Borodin A. S., Kalyuzhin V. V., “Sopryazhennost parametrov entsefalogrammy mozga cheloveka i elektromagnitnykh polei shumanovskogo rezonatora po dannym monitoringovykh issledovanii”, Biofizika, 51:3 (2006), 534–538
[11] Saroka K. S., Vares D. E., Persinger M. A., “Similar spectral power densities within the Schumann resonance and a large population of quantitative electroencephalographic profiles: Supportive evidence for Koenig and Pobachenko”, PLoS ONE, 11:1 (2016), e0146595 | DOI
[12] Ma Y., Shi W., Peng C.-K., Yang A. C., “Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches”, Sleep Medicine Reviews, 37 (2018), 85–93 | DOI
[13] Lutz A., Lachaux J.-P., Martinerie J., Varela F. J., “Guiding the study of brain dynamics by using first-person data: Synchrony patterns correlate with ongoing conscious states during a simple visual task”, Proc. Natl. Acad. Sci. U. S. A, 99:3 (2002), 1586–1591 | DOI
[14] Kubryak O., “The Anticipating heart”, Anticipation and Medicine, ed. Nadin M., Springer, Cham, 49–65 | DOI
[15] Adelhöfer N., Schreiter M. L., Beste C., “Cardiac cycle gated cognitive-emotional control in superior frontal cortices”, NeuroImage, 222 (2020), 117275 | DOI
[16] Heck D. H., Kozma R., Kay L. M., “The rhythm of memory: how breathing shapes memory function”, J. Neurophysiol, 122:2 (2019), 563–571 | DOI
[17] Aristov V., Stepanyan I., “Hypothesis of cyclic structures of pre- and consciousness as a transition in neuron-like graphs to a special type of symmetry”, Symmetry, 14:3 (2022), 505 | DOI | MR
[18] Stepanyan I. V., Mekler A. A., “Chaotic algorithms of analysis of cardiovascular systems and artificial intelligence”, Advances in Artificial Systems for Medicine and Education III, Advances in Intelligent Systems and Computing, 1126, eds. Hu Z., Petoukhov S., He M., Springer, Cham, 2019, 231–240 | DOI
[19] Stepanyan I. V., Lednev M. Y., Aristov V. V., “Genetic interpretation of neurosemantics and kinetic approach for studying complex nets: Theory and experiments”, Advances in Artificial Systems for Medicine and Education IV, Advances in Intelligent Systems and Computing, 1315, eds. Hu Z., Petoukhov S., He M., Springer, Cham, 2020, 13–28 | DOI
[20] Iakovidou N. D., “Graph theory at the service of electroencephalograms”, Brain Connect, 7:3 (2017), 137–151 | DOI
[21] Sporns O., “Graph theory methods: applications in brain networks”, Dialogues in Clinical Neuroscience, 20:2 (2018), 111–121 | DOI