Introduction to the statistical theory of differential communication based on chaotic signals
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 421-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to analyse the statistical characteristics of a Direct Chaotic Differentially Coherent communication scheme based on chaotic radio pulses in a communication channel with additive white Gaussian noise, where the chaotic signal is given by different instantaneous distributions. Methods. To achieve this goal, numerical modelling of the noise immunity of Direct Chaotic Differentially Coherent communication is conducted and compared with the results of analytical research. Results. The regularities associated with the use of chaotic signals with various statistical distributions of instantaneous values were studied. The minimum values of energy per bit to white Gaussian noise power spectral density ratio were obtained, providing the required error probabilities. Conclusion. It is shown that the proposed system works efficiently at high values of processing gain, and as the processing gain increases, the dependence of noise immunity on the specific statistical distribution of the chaotic signal is levelled out.
Keywords: chaotic radio pulses, differential communication scheme, numerical simulation, statistic characteristics, bit-error probability.
@article{IVP_2023_31_4_a2,
     author = {A. S. Dmitriev and A. I. Ryzhov and C. M. Sierra-Teran},
     title = {Introduction to the statistical theory of differential communication based on chaotic signals},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {421--438},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a2/}
}
TY  - JOUR
AU  - A. S. Dmitriev
AU  - A. I. Ryzhov
AU  - C. M. Sierra-Teran
TI  - Introduction to the statistical theory of differential communication based on chaotic signals
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 421
EP  - 438
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a2/
LA  - ru
ID  - IVP_2023_31_4_a2
ER  - 
%0 Journal Article
%A A. S. Dmitriev
%A A. I. Ryzhov
%A C. M. Sierra-Teran
%T Introduction to the statistical theory of differential communication based on chaotic signals
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 421-438
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a2/
%G ru
%F IVP_2023_31_4_a2
A. S. Dmitriev; A. I. Ryzhov; C. M. Sierra-Teran. Introduction to the statistical theory of differential communication based on chaotic signals. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 4, pp. 421-438. http://geodesic.mathdoc.fr/item/IVP_2023_31_4_a2/

[1] Kocarev L., Halle K. S., Eckert K., Chua L. O., Parlitz U., “Experimental demonstration of secure communications via chaotic synchronization”, Int. J. Bifurc. Chaos, 2:3 (1992), 709–713 | DOI | Zbl

[2] Parlitz U., Chua L. O., Kocarev L., Halle K. S., Shang A., “Transmission of digital signals by chaotic synchronization”, Int. J. Bifurc. Chaos, 2:4 (1992), 973–977 | DOI | MR | Zbl

[3] Cuomo K. M., Oppenheim A. V., “Circuit implementation of synchronized chaos with applications to communications”, Phys. Rev. Lett., 71:1 (1993), 65–68 | DOI

[4] Belskii Yu. L., Dmitriev A. S., “Peredacha informatsii s ispolzovaniem determinirovannogo khaosa”, Radiotekhnika i elektronika, 38:7 (1993), 1310–1315

[5] Volkovskii A. R., Rulkov N. V., “Sinkhronnyi khaoticheskii otklik nelineinoi sistemy peredachi informatsii s khaoticheskoi nesuschei”, Pisma v ZhTF, 19:3 (1993), 71–75

[6] Dedieu H., Kennedy M. P., Hasler M., “Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits”, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40:10 (1993), 634–642 | DOI | MR

[7] Halle K. S., Wu C. W., Itoh M., Chua L. O., “Spread spectrum communications through modulation of chaos”, Int. J. Bifurc. Chaos, 3:2 (1993), 469–477 | DOI | Zbl

[8] Dmitriev A. S., Panas A., Starkov S. O., “Transmission of complex analog signals by means of dynamical chaos”, Proceedings of the 3rd International Specialist Workshop on Nonlinear Dynamics of Electronic Systems (Dublin, Ireland, 28-29 July 1995), Dublin publ NDES, 1995, 241–244

[9] Dmitriev A. S., Panas A. I., Starkov S. O., “Experiments on speech and music signals transmission using chaos”, Int. J. Bifurc. Chaos, 5:4 (1995), 1249–1254 | DOI | Zbl

[10] Dmitriev A. S., Panas A. I., Dinamicheskii khaos: Novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002, 252 pp.

[11] Lau F. C. M., Tse C. K., Chaos-Based Digital Communication Systems: Operating Principles, Analysis Methods, and Performance Evaluation, Springer-Verlag, Berlin, Heidelberg, 2003, 228 pp. | DOI | Zbl

[12] Kaddoum G., “Wireless chaos-based communication systems: A comprehensive survey”, IEEE Access, 4 (2016), 2621–2648 | DOI | MR

[13] Dmitriev A. S., Panas A. I., Starkov S. O., Andreev Yu. V., Kuzmin L. V., Kyarginskii B. E., Makismov N. A., Sposob peredachi informatsii s pomoschyu khaoticheskikh signalov, Patent # 2185032 C2 Rossiiskaya Federatsiya, MPK H04K 1/00, H04B 1/02, H04J 13/00: zayavl. 06.10.2000: opubl. 10.07.2002, 20 pp.

[14] Dmitriev A. S., Kyarginskii B. E., Panas A. I., Starkov S. O., “Pryamokhaoticheskie skhemy peredachi informatsii v sverkhvysokochastotnom diapazone”, Radiotekhnika i elektronika, 46:2 (2001), 224–233

[15] Dmitriev A. S., Kyarginsky B. Y., Panas A. I., Starkov S. O., “Experiments on direct chaotic communications in microwave band”, Int. J. Bifurc. Chaos, 13:6 (2003), 1495–1507 | DOI | MR | Zbl

[16] VanWiggeren G. D., Roy R., “Optical communication with chaotic waveforms”, Phys. Rev. Lett., 81:16 (1998), 3547–3550 | DOI

[17] Ke J., Yi L., Hou T., Hu W., “Key technologies in chaotic optical communications”, Front. Optoelectron., 9:3 (2016), 508–517 | DOI

[18] Kingni S. T., Ainamon C., Tamba V. K., Chabi Orou J. B., “Directly modulated semiconductor ring lasers: Chaos synchronization and applications to cryptography communications”, Chaos. Theory and Applications, 2:1 (2020), 31–39

[19] Bai C., Ren H.-P., Grebogi C., Baptista M. S., “Chaos-based underwater communication with arbitrary transducers and bandwidth”, Appl. Sci., 8:2 (2018), 162–172 | DOI

[20] Chen M., Xu W., Wang D., Wang L., “Multi-carrier chaotic communication scheme for underwater acoustic communications”, IET Communications, 13:14 (2019), 2097–2105 | DOI | MR

[21] Dmitriev A. S., Efremova E. V., Gerasimov M. Yu., Itskov V. V., “Radioosveschenie na osnove sverkhshirokopolosnykh generatorov dinamicheskogo khaosa”, Radiotekhnika i elektronika, 61:11 (2016) | DOI | Zbl

[22] Dmitriev A. S., Efremova E. V., Ryzhov A. I., Petrosyan M. M., Itskov V. V., “Artificial radio lighting with sources of microwave dynamic chaos”, Chaos, 31:6 (2021), 063135 | DOI | MR

[23] Petrovich N. T., Razmakhnin M. K., Sistemy svyazi s shumopodobnymi signalami, Sovetskoe radio, M., 1969, 233 pp.

[24] Varakin L. E., Sistemy svyazi s shumopodobnymi signalami, Radio i svyaz, M., 1985, 384 pp.

[25] Dixon R. C., Spread Spectrum Systems with Commercial Applications, 3, Wiley, New York, 1994, 592 pp.

[26] Almuhaya M. A. M., Jabbar W. A., Sulaiman N., Abdulmalek S., “A survey on LoRaWAN technology: Recent trends, opportunities, simulation tools and future directions”, Electronics, 11:1 (2022), 164–195 | DOI

[27] Kolumbán G., Kennedy M. P., Chua L. O., “The role of synchronization in digital communications using chaos. I. Fundamentals of digital communications”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44:10 (1997), 927–936 | DOI | MR

[28] Kolumbán G., Vizvári B., Schwarz W, Abel A., “Differential chaos shift keying: A robust coding for chaos communication”, Proceedings of the 4th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems (Seville, Spain, 27-28 June 1996), NDES, Seville, 1996, 87–92

[29] Sushchik M., Tsimring L. S., Volkovskii A. R., “Performance analysis of correlation-based communication schemes utilizing chaos”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47:12 (2000), 1684–1691 | DOI

[30] Dmitriev A. S., Mokhseni T. I., Serra-Teran K. M., “Otnositelnaya peredacha informatsii na osnove khaoticheskikh radioimpulsov”, Radiotekhnika i elektronika, 63:10 (2018), 1074–1082 | DOI

[31] Dmitriev A. S., Mokhseni T. I., Serra-Teran K. M., “Sverkh- i gipershirokopolosnaya otnositelnaya peredacha informatsii na osnove khaoticheskikh radioimpulsov”, Izvestiya vuzov. PND, 26:4 (2018), 59–74 | DOI

[32] Dmitriev A. S., Mokhseni T. I., Sierra-Terant C. M., “Differentially coherent communication scheme based on chaotic radio pulses”, Nonlinear Phenomena in Complex Systems, 21:3 (2018), 237–246 | Zbl

[33] Dmitriev A. S., Mokhseni T. I., Serra-Teran K. M., “Modelirovanie sistemy otnositelnoi peredachi informatsii na osnove khaoticheskikh radioimpulsov v srede ADS”, Izvestiya vuzov. PND, 27:5 (2019), 72–86 | DOI

[34] Klyuev V. F., Samarin V. P., Klyuev A. V., “Nelineinye algoritmy izmereniya moschnosti shumovogo signala na fone pomekh”, Izvestiya vuzov. Radioelektronika, 56:6 (2013), 48–55 | DOI