Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_3_a9, author = {L. I. Mogilevich and E. V. Popova}, title = {Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {365--376}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a9/} }
TY - JOUR AU - L. I. Mogilevich AU - E. V. Popova TI - Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 365 EP - 376 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a9/ LA - en ID - IVP_2023_31_3_a9 ER -
%0 Journal Article %A L. I. Mogilevich %A E. V. Popova %T Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 365-376 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a9/ %G en %F IVP_2023_31_3_a9
L. I. Mogilevich; E. V. Popova. Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 365-376. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a9/
[1] Nariboli G. A., “Nonlinear longitudinal dispersive waves in elastic rods”, J. Math. Phys. Sci, 4 (1970), 64–73
[2] Nariboli G. A, Sedov A., “Burgers's-Korteweg-De Vries equation for viscoelastic rods and plates”, J. Math. Anal. Appl, 32:3 (1970), 661–677 | DOI
[3] Erofeev V. I, Klyueva N. V., “Solitons and nonlinear periodic strain waves in rods, plates, and shells (a review)”, Acoustical Physics, 48:6 (2002), 643–655 | DOI
[4] Zemlyanukhin A. I, Mogilevich L. I., “Nonlinear waves in inhomogeneous cylindrical shells: A new evolution equation”, Acoustical Physics, 47:3 (2001), 303–307 | DOI
[5] Zemlyanukhin A. I, Andrianov I. V, Bochkarev A. V, Mogilevich L. I., “The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells”, Nonlinear Dynamics, 98:1 (2019), 185–194 | DOI
[6] Bochkarev S. A, Matveenko V. P., “Stability of coaxial cylindrical shells containing a rotating fluid”, Computational Continuum Mechanics, 6:1 (2013), 94–102 | DOI
[7] Mogilevich L., Ivanov S., “Longitudinal waves in two coaxial elastic shells with hard cubic nonlinearity and filled with a viscous incompressible fluid”, Recent Research in Control Engineering and Decision Making. ICIT 2020, v. 337, Studies in Systems, Decision and Control, eds. Dolinina O., Bessmertny I., Brovko A., Kreinovich V., Pechenkin V., Lvov A., Zhmud V., Springer, Cham, 2021, 14–26 | DOI
[8] Pa\"{i}doussis M. P., Fluid-Structure Interactions: Slender Structures and Axial Flow, 2, Academic Press, London, 2014, 867 pp. | DOI
[9] Amabili M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, 2008, 374 pp. | DOI
[10] Samarskii A. A., The Theory of Difference Schemes, CRC Press, Boca Raton, 2001, 786 pp. | DOI
[11] Il'yushin A. A., Continuum Mechanics, Moscow University Press, Moscow, 1990, 310 pp.
[12] Jones R. M., Deformation Theory of Plasticity, Bull Ridge Publishing, Blacksburg, 2009, 622 pp.
[13] Kauderer H., Nichtlineare Mechanik, Berlin: Springer-Verlag, 1958, 684 pp. | DOI
[14] Zemlyanukhin A. I, Bochkarev A. V, Andrianov I. V, Erofeev V. I., “The Schamel-Ostrovsky equation in nonlinear wave dynamics of cylindrical shells”, Journal of Sound and Vibration, 491 (2021), 115752 | DOI
[15] Loitsyanskii LG., Mechanics of Liquids and Gases, v. 6, International Series of Monographs in Aeronautics and Astronautics, Pergamon Press, Oxford, 1966, 804 pp. | DOI
[16] Gerdt VP, Blinkov Y. A, Mozzhilkin V. V., “Gröbner bases and generation of difference schemes for partial differential equations”, Symmetry, Integrability and Geometry: Methods and Applications, 2 (2006), 051 | DOI