Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_3_a7, author = {M. I. Krivonosov and S. N. Tikhomirov}, title = {Strategies and first-absorption times in the random walk game}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {334--350}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a7/} }
TY - JOUR AU - M. I. Krivonosov AU - S. N. Tikhomirov TI - Strategies and first-absorption times in the random walk game JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 334 EP - 350 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a7/ LA - en ID - IVP_2023_31_3_a7 ER -
M. I. Krivonosov; S. N. Tikhomirov. Strategies and first-absorption times in the random walk game. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 334-350. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a7/
[1] Coolidge J. L., “The gambler's ruin”, Annals of Mathematics, 10:4 (1909), 181–192 | DOI
[2] Feller W. D., An Introduction to Probability Theory and Its Applications, New York, Wiley, 1950, 704 pp.
[3] Redner S., A Guide to First-Passage Processes, Cambridge University Press, Cambridge, 2001, 312 pp. | DOI
[4] Hausner M., Games of Survival. Report No. RM-776, The RAND Corporation, Santa Monica, 1952, 7 pp.
[5] Peisakoff M. P., More on Games of Survival. Report No. RM-884, The RAND Corporation, Santa Monica, 1952, 20 pp.
[6] Kmet A., Petkovšek M., “Gambler's ruin problem in several dimensions”, Advances in Applied Mathematics, 28:2 (2002), 107–118 | DOI
[7] Romanovskii I. V., “Game-type random walks”, Theory of Probability Its Applications, 6:4 (1961), 393–396 | DOI
[8] Nisan N., Roughgarden T., Tardos E., Vazirani V. V., Algorithmic Game Theory, Cambridge University Press, Cambridge, 2007, 754 pp. | DOI
[9] Pearson K., “The problem of the random walk”, Nature, 72 (1905), 294 | DOI
[10] Zaburdaev V., Denisov S., Klafter J., “Lévy walks”, Reviews of Modern Physics, 87:2 (2015), 483–530 | DOI
[11] Bénichou O., Loverdo C., Moreau M., Voituriez R., “Intermittent search strategies”, Reviews of Modern Physics, 83:1 (2011), 81–129 | DOI
[12] Rhee I, Shin M, Hong S, Lee K, Kim SJ, Chong S., “On the Levy-walk nature of human mobility”, IEEE/ACM Transactions on Networking, 19:3 (2011), 630–643 | DOI
[13] Fauchald P., “Foraging in a hierarchical patch system”, The American Naturalist, 153:6 (1999), 603–613 | DOI
[14] Scanlon T. M., Caylor K. K., Levin S. A., Rodriguez-Iturbe I., “Positive feedbacks promote power-law clustering of Kalahari vegetation”, Nature, 449:7159 (2007), 209–212 | DOI
[15] Reynolds A., Ceccon E., Baldauf C., Karina Medeiros T., Miramontes O., “Lévy foraging patterns of rural humans”, PLOS ONE, 13:6 (2018), e0199099 | DOI
[16] Pyke G. H., “Understanding movements of organisms: it's time to abandon the Lévy foraging hypothesis”, Methods in Ecology and Evolution, 6:1 (2015), 1–16 | DOI
[17] LaScala-Gruenewald D. E, Mehta R. S, Liu Y., Denny M. W., “Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies”, Ecological Modelling, 404 (2019), 69–82 | DOI
[18] Krivonosov MI, Tikhomirov SN., Random Walk Game, 2020 https://play.google.com/store/apps/details?id=com.scigames.RWGame
[19] Taylor H. M, Karlin S., An Introduction to Stochastic Modeling, Academic Press, San Diego, 2008, 648 pp.
[20] Kemeny J. G, Snell J. L., Finite Markov Chains, Springer-Verlag, New York, 1983, 226 pp.
[21] Darroch J. N, Seneta E., Journal of Applied Probability, 2:1 (1965), On quasi-stationary distributions in absorbing discrete-time finite Markov shains | DOI
[22] Zhang J., Calabrese C., Ding J., Liu M. , Zhang B., “Advantages and challenges in using mobile apps for field experiments: A systematic review and a case study”, Mobile Media Communication, 6:2 (2018), 179–196 | DOI