Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_3_a6, author = {B. H. Nguyen and V. G. Tsybulin}, title = {Mathematical model of three competing populations and multistability of periodic regimes}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {316--333}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/} }
TY - JOUR AU - B. H. Nguyen AU - V. G. Tsybulin TI - Mathematical model of three competing populations and multistability of periodic regimes JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 316 EP - 333 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/ LA - ru ID - IVP_2023_31_3_a6 ER -
%0 Journal Article %A B. H. Nguyen %A V. G. Tsybulin %T Mathematical model of three competing populations and multistability of periodic regimes %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 316-333 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/ %G ru %F IVP_2023_31_3_a6
B. H. Nguyen; V. G. Tsybulin. Mathematical model of three competing populations and multistability of periodic regimes. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 316-333. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/