Mathematical model of three competing populations and multistability of periodic regimes
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 316-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is to analyze oscillatory regimes in a system of nonlinear differential equations describing the competition of three non-antagonistic species in a spatially homogeneous domain. Methods. Using the theory of cosymmetry, we establish a connection between the destruction of a two-parameter family of equilibria and the emergence of a continuous family of periodic regimes. With the help of a computational experiment in MATLAB, a search for limit cycles and an analysis of multistability were carried out. Results. We studied dynamic scenarios for a system of three competing species for different coefficients of growth and interaction. For several combinations of parameters in a computational experiment, new continuous families of limit cycles (extreme multistability) are found. We establish bistability: the coexistence of isolated limit cycles, as well as a stationary solution and an oscillatory regime. Conclusion. We found two scenarios for locating a family of limit cycles regarding a plane passing through three equilibria corresponding to the existence of only one species. Besides cycles lying in this plane, a family is possible with cycles intersecting this plane at two points. We can consider this case as an example of periodic processes leading to overpopulation and a subsequent decline in numbers. These results will further serve as the basis for the analysis of systems of competing populations in spatially heterogeneous areas.
Keywords: Volterra model, nonlinear differential equations, competition, family of limit cycles, multistability.
@article{IVP_2023_31_3_a6,
     author = {B. H. Nguyen and V. G. Tsybulin},
     title = {Mathematical model of three competing populations and multistability of periodic regimes},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {316--333},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/}
}
TY  - JOUR
AU  - B. H. Nguyen
AU  - V. G. Tsybulin
TI  - Mathematical model of three competing populations and multistability of periodic regimes
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 316
EP  - 333
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/
LA  - ru
ID  - IVP_2023_31_3_a6
ER  - 
%0 Journal Article
%A B. H. Nguyen
%A V. G. Tsybulin
%T Mathematical model of three competing populations and multistability of periodic regimes
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 316-333
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/
%G ru
%F IVP_2023_31_3_a6
B. H. Nguyen; V. G. Tsybulin. Mathematical model of three competing populations and multistability of periodic regimes. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 316-333. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a6/

[1] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp.

[2] Myurrei Dzh., Matematicheskaya biologiya, v. 1, Institut kompyuternykh issledovanii; Regulyarnaya i khaoticheskaya dinamika, M.-Izhevsk, 2011, 776 pp.

[3] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, Institut kompyuternykh issledovanii, Izhevsk, 2003, 368 pp.

[4] Rubin A., Riznichenko G., Mathematical Biophysics, Springer, New York, 2014, 273 pp. | DOI

[5] Frisman E. Ya., Kulakov M. P., Revutskaya O. L., Zhdanova O. L., Neverova G. P., “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | DOI

[6] Lotka A. J., Elements of Physical Biology, Williams Wilkins, Philadelphia, Pennsylvania, 1925, 495 pp.

[7] Volterra V., “Variazioni e fluttuazioni del numero d'individui in specie animali conviventi”, Memoria della Reale Accademia Nazionale dei Lincei, 2 (1926), 31–113

[8] May R. M., Leonard W. J., “Nonlinear aspects of competition between three species”, SIAM Journal on Applied Mathematics, 29:2 (1975), 243–253 | DOI

[9] Chia-Wei C., Lih-Ing W., Sze-Bi H., “On the asymmetric May–Leonard model of three competing species”, SIAM Journal on Applied Mathematics, 58:1 (1998), 211–226

[10] Antonov V., Dolićanin D., Romanovski V. G., Tóth J., “Invariant planes and periodic oscillations in the May–Leonard asymmetric model”, MATCH Communications in Mathematical and in Computer Chemistry, 76:2 (2016), 455–474

[11] van der Hoff Q., Greeff J. C., Fay T. H., “Defining a stability boundary for three species competition models”, Ecological Modelling, 220:20 (2009), 2640–2645

[12] Hou Z., Baigent S., “Heteroclinic limit cycles in competitive Kolmogorov systems”, Discrete Continuous Dynamical Systems, 33:9 (2013), 4071–4093

[13] Zeeman E. C., Zeeman M. L., “An n-dimensional competitive Lotka–Volterra system is generically determined by the edges of its carrying simplex”, Nonlinearity, 15:6 (2002), 2019–2032 | DOI

[14] Zeeman E. C., Zeeman M. L., “From local to global behavior in competitive Lotka-Volterra systems”, Transactions of the American Mathematical Society, 355:2 (2003), 713–734 | DOI

[15] Chen X., Jiang J., Niu L., “On Lotka–Volterra equations with identical minimal intrinsic growth rate”, SIAM Journal on Applied Dynamical Systems, 14:3 (2015), 1558–1599 | DOI

[16] Jiang J., Liang F., “Global dynamics of 3D competitive Lotka-Volterra equations with the identical intrinsic growth rate”, Journal of Differential Equations, 268:6 (2020), 2551–2586 | DOI

[17] Nguen B. Kh., Kha D. T., Tsibulin V. G., “Multistabilnost dlya sistemy trekh konkuriruyuschikh vidov”, Kompyuternye issledovaniya i modelirovanie, 14:6 (2022), 1325–1342 | DOI

[18] Yudovich V. I., “O bifurkatsiyakh pri vozmuscheniyakh, narushayuschikh kosimmetriyu”, Doklady Akademii nauk, 398:1 (2004), 57–61

[19] Yudovich V. I., “Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it”, Chaos, 5 (1995), 402–411 | DOI

[20] Epifanov A. V., Tsibulin V. G., “Modelirovanie kolebatelnykh stsenariev sosuschestvovaniya konkuriruyuschikh populyatsii”, Biofizika, 61:4 (2016), 823–832

[21] Epifanov A. V., Tsibulin V. G., “O dinamike kosimmetrichnykh sistem khischnikov i zhertv”, Kompyuternye issledovaniya i modelirovanie, 9:5 (2017), 799–813 | DOI

[22] Kha D. T., Tsibulin V. G., “Multistabilnye stsenarii dlya differentsialnykh uravnenii, opisyvayuschikh dinamiku sistemy khischnikov i zhertv”, Kompyuternye issledovaniya i modelirovanie, 12:6 (2020), 1451–1466 | DOI

[23] Fay T. H., Greeff J. C., “A three species competition model as a decision support tool”, Ecological Modelling, 211:1–2 (2008), 142–152 | DOI

[24] Bashkirtseva I. A., Karpenko L. V., Ryashko L. B., “Stokhasticheskaya chuvstvitelnost predelnykh tsiklov modeli «khischnik – dve zhertvy»”, Izvestiya vuzov. PND, 18:6 (2010), 42–64 | DOI

[25] Abramova E. P., Ryazanova T. V., “Dinamicheskie rezhimy stokhasticheskoi modeli «khischnik–zhertva» s uchetom konkurentsii i nasyscheniya”, Kompyuternye issledovaniya i modelirovanie, 11:3 (2019), 515–531 | DOI

[26] Bayliss A., Nepomnyashchy A. A., Volpert V. A., “Mathematical modeling of cyclic population dynamics”, Physica D: Nonlinear Phenomena, 394 (2019), 56–78 | DOI

[27] Frischmuth K., Budyansky A. V., Tsybulin V. G., “Modeling of invasion on a heterogeneous habitat: taxis and multistability”, Applied Mathematics and Computation, 410 (2021), 126456 | DOI

[28] Budyanskii A. V., Tsibulin V. G., “Modelirovanie dinamiki populyatsii na neodnorodnom areale: invaziya i multistabilnost”, Biofizika, 67:1 (2022), 174–182

[29] Kha T. D., Tsibulin V. G., “Multistabilnost dlya matematicheskoi modeli dinamiki khischnikov i zhertv na neodnorodnom areale”, Sovremennaya matematika. Fundamentalnye napravleniya, 68:3 (2022), 509–521 | DOI

[30] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001, 400 pp.

[31] Waugh I., Illingworth S., Juniper M., “Matrix-free continuation of limit cycles for bifurcation analysis of large thermoacoustic systems”, Journal of Computational Physics, 240 (2013), 225–247 | DOI