Application of joint singularity spectrum to analyze cooperative dynamics of complex systems
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 305-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is to generalize the wavelet-transform modulus maxima method to the case of cooperative dynamics of interacting systems and to introduce the joint singularity spectrum into consideration. The research method is the wavelet-based multifractal formalism, the generalized version of which is used to quantitatively describe the effect of chaotic synchronization in the dynamics of model systems. Models of coupled Rossler systems and paired nephrons are considered. As a result of the studies carried out, the main changes in the joint singularity spectra were noted during the transition from synchronous to asynchronous oscillations in the first model and to the partial synchronization mode in the second model. Conclusion. Proposed approach can be used in studies of the cooperative dynamics of systems of various nature.
Keywords: multifractal formalism, joint singularity spectrum, synchronization of oscillations, wavelet transform.
@article{IVP_2023_31_3_a5,
     author = {G. Gujo and A. N. Pavlov},
     title = {Application of joint singularity spectrum to analyze cooperative dynamics of complex systems},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {305--315},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a5/}
}
TY  - JOUR
AU  - G. Gujo
AU  - A. N. Pavlov
TI  - Application of joint singularity spectrum to analyze cooperative dynamics of complex systems
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 305
EP  - 315
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a5/
LA  - ru
ID  - IVP_2023_31_3_a5
ER  - 
%0 Journal Article
%A G. Gujo
%A A. N. Pavlov
%T Application of joint singularity spectrum to analyze cooperative dynamics of complex systems
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 305-315
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a5/
%G ru
%F IVP_2023_31_3_a5
G. Gujo; A. N. Pavlov. Application of joint singularity spectrum to analyze cooperative dynamics of complex systems. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 305-315. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a5/

[1] Bendat J. S., Piersol A. G., Random Data: Analysis and Measurement Procedures, John Wiley Sons, 4th edition New Jersey, 2010, 640 pp. | DOI

[2] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd edition Cambridge, 2007, 1256 pp.

[3] Halsey T. C., Jensen M. H., Kadanoff L. P., Procaccia I., Shraiman B. I., “Fractal measures and their singularities: The characterization of strange sets”, Phys. Rev. A, 33:2 (1986), 1141–1151 | DOI

[4] Frish U., Parisi G., “On the singularity structure of fully developed turbulence”, Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, eds. Ghil M., Benzi R., Parisi G., North-Holland, New York, 1985, 84–88

[5] Benzi R., Vulpiani A., “Multifractal approach to fully developed turbulence”, Rendiconti Lincei. Scienze Fisiche e Naturali, 33:3 (2022), 471–477 | DOI

[6] Muzy J. F., Bacry E., Arneodo A., “Wavelets and multifractal formalism for singular signals: Application to turbulence data”, Phys. Rev. Lett., 67:25 (1991), 3515–3518 | DOI

[7] Muzy J. F., Bacry E., Arneodo A., “The multifractal formalism revisited with wavelets”, International Journal of Bifurcation and Chaos, 4:2 (1994), 245–302 | DOI

[8] Kantelhardt J. W., Zschiegner S. A., Koscielny-Bunde E., Havlin S., Bunde A., Stanley H. E., “Multifractal detrended fluctuation analysis of nonstationary time series”, Physica A: Statistical Mechanics and its Applications, 316:1–4 (2002), 87–114 | DOI

[9] Ihlen E. A. F., “Introduction to multifractal detrended fluctuation analysis in Matlab”, Frontiers in Physiology, 3 (2012), 141 | DOI

[10] Meneveau C., Sreenivasan K. R., Kailasnath P., Fan M. S., “Joint multifractal measures: Theory and applications to turbulence”, Phys. Rev. A, 41:2 (1990), 894–913 | DOI

[11] Ivanov P. C., Amaral L. A. N., Goldberger A. L., Havlin S., Rosenblum M. G., Struzik Z. R., Stanley H. E., “Multifractality in human heartbeat dynamics”, Nature, 399:6735 (1999), 461–465 | DOI

[12] Pavlov A. N., Sosnovtseva O. V., Ziganshin A. R., Holstein-Rathlou N.-H., Mosekilde E., “Multiscality in the dynamics of coupled chaotic systems”, Physica A: Statistical Mechanics and its Applications, 316:1–4 (2002), 233–249 | DOI

[13] Pavlov A. N., Pavlova O. N., Abdurashitov A. S., Sindeeva O. A., Semyachkina-Glushkovskaya O. V., Kurths J., “Characterizing scaling properties of complex signals with missed data segments using the multifractal analysis”, Chaos, 28:1 (2018), 013124 | DOI

[14] Addison P. S., The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, 2, CRC Press, Boca Raton, 2016, 464 pp. | DOI

[15] Barfred M., Mosekilde E., Holstein-Rathlou N.-H., “Bifurcation analysis of nephron pressure and flow regulation”, Chaos, 6:3 (1996), 280–287 | DOI

[16] Postnov D. E., Sosnovtseva O. V., Mosekilde E., Holstein-Rathlou N.-H., “Cooperative phase dynamics in coupled nephrons”, International Journal of Modern Physics B, 15:23 (2001), 3079–3098 | DOI

[17] Sosnovtseva O. V., Pavlov A. N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H., Marsh D. J., “Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats”, Am. J. Physiol. Renal. Physiol., 293:5 (2007), F1545–F1555 | DOI