Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_3_a4, author = {V. N. Govorukhin}, title = {Transfer of passive particles in the velocity field of vortex tripole moving on a plane}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {286--304}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a4/} }
TY - JOUR AU - V. N. Govorukhin TI - Transfer of passive particles in the velocity field of vortex tripole moving on a plane JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 286 EP - 304 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a4/ LA - ru ID - IVP_2023_31_3_a4 ER -
V. N. Govorukhin. Transfer of passive particles in the velocity field of vortex tripole moving on a plane. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 286-304. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a4/
[1] van Heijst G. J. F., Kloosterziel R. C., “Tripolar vortices in a rotating fluid”, Nature, 338:6216 (1989), 569–571 | DOI
[2] Kloosterziel R. C., van Heijst G. J. F., “An experimental study of unstable barotropic vortices in a rotating fluid”, J. Fluid Mech, 223 (1991), 1–24 | DOI
[3] Carnevale G. F., Kloosterziel R. C., “Emergence and evolution of triangular vortices”, J. Fluid Mech, 259 (1994), 305–331 | DOI
[4] Trieling R. R., van Heijst G. J. F., Kizner Z., “Laboratory experiments on multipolar vortices in a rotating fluid”, Physics of Fluids, 22:9 (2010), 094104 | DOI
[5] Rostami M., Zeitlin V., “Evolution of double-eye wall hurricanes and emergence of complex tripolar end states in moist-convective rotating shallow water model”, Physics of Fluids, 34:6 (2022), 066602 | DOI
[6] Carton X., Legras B., “The life-cycle of tripoles in two-dimensional incompressible flows”, J. Fluid Mech, 267 (1994), 53–82 | DOI
[7] Kizner Z., Khvoles R., “The tripole vortex: Experimental evidence and explicit solutions”, Phys. Rev. E, 70:1 (2004), 016307 | DOI
[8] Viúdez A., “A stable tripole vortex model in two-dimensional Euler flows”, J. Fluid Mech, 878 (2019), R5 | DOI
[9] Kirkhgof G., Mekhanika: Lektsii po matematicheskoi fizike, Izd-vo AN SSSR, M., 1962, 404 pp.
[10] Betchelor Dzh., Vvedenie v dinamiku zhidkosti, Mir, M., 1973, 760 pp.
[11] Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, Journal für die reine und angewandte Mathematik, 55 (1858), 25–55 | DOI
[12] Aref H., “Motion of three vortices”, Physics of Fluids, 22:3 (1979), 393–400 | DOI
[13] Borisov A. V., Mamaev I. S., Vaskina A. V., “Novye otnositelnye ravnovesiya v sisteme trekh tochechnykh vikhrei v krugovoi oblasti i ikh ustoichivost”, Nelineinaya dinamika, 7:1 (2011), 119–138 | DOI
[14] Kuznetsov L., Zaslavsky G. M., “Passive particle transport in three-vortex flow”, Phys. Rev. E, 61:4 (2000), 3777–3792 | DOI
[15] Leoncini X., Kuznetsov L., Zaslavsky G. M., “Motion of three vortices near collapse”, Physics of Fluids, 12:8 (2000), 1911–1927 | DOI
[16] Yim H., Kim S.-C., Sohn S.-I., “Motion of three geostrophic Bessel vortices”, Physica D: Nonlinear Phenomena, 441 (2022), 133509 | DOI
[17] Gröbli W., “Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden”, Vierteljahrsch. d. Naturforsch. Geselsch, 22 (1877), 129–165
[18] Novikov E. A., “Dinamika i statistika sistemy vikhrei”, ZhETF, 68:5 (1975), 1868–1882
[19] Velasco Fuentes O. U., van Heijst G. J. F., van Lipzig N. P. M., “Unsteady behaviour of a topography-modulated tripole”, J. Fluid Mech, 307 (1996), 11–41 | DOI
[20] Gudimenko A. I., Zakharenko A. D., “Dvizhenie trekh vikhrei s nulevoi summarnoi intensivnostyu”, Prikladnaya mekhanika i tekhnicheskaya fizika, 51:3 (2010), 55–65
[21] Aref H., “Stirring by chaotic advection”, J. Fluid Mech, 143 (1984), 1–21
[22] Govorukhin V. N., Morgulis A., Yudovich V. I., Zaslavsky G. M., “Chaotic advection in compressible helical flow”, Phys. Rev. E, 60:3 (1999), 2788–2798 | DOI
[23] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Osnovnye printsipy i modeli dinamicheskoi advektsii”, Doklady Akademii nauk, 432:1 (2010), 41–44
[24] Ryzhov E. A., Koshel K. V., “Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow”, Chaos, 25:10 (2015), 103108 | DOI
[25] Koshel K. V., Sokolovskiy M. A., Davies P. A., “Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle”, Fluid Dynamics Research, 40:10 (2008), 695–736 | DOI
[26] Aref H., Blake J. R., Budišić M., Cardoso S. S. S., Cartwright J. H. E., Clercx H. J. H., El Omari K., Feudel U., Golestanian R., Gouillart E., van Heijst G. F., Krasnopolskaya T. S., Le Guer Y., MacKay R. S., Meleshko V. V., Metcalfe G., Mezić I., De Moura A. P. S., Piro O., Speetjens M. F. M., Sturman R., Thiffeault J.-L., Tuval I., “Frontiers of chaotic advection”, Rev. Mod. Phys., 89:2 (2017), 025007 | DOI
[27] Govorukhin V. N., “Chislennoe issledovanie dinamicheskoi sistemy, porozhdaemoi CABC vektornym polem”, Izvestiya vuzov. PND, 28:6 (2020), 633–642
[28] Petrovskaya N. V., “Konechnomernye modeli dinamiki vikhrevykh techenii idealnoi zhidkosti v kvadratnoi oblasti”, Izvestiya vuzov. PND, 17:6 (2009), 159–172
[29] Delbende I., Selçuk C., Rossi M., “Nonlinear dynamics of two helical vortices: A dynamical system approach”, 6, no. 8, 084701 | DOI
[30] Sengupta T. K., Singh N., Suman V. K., “Dynamical system approach to instability of flow past a circular cylinder”, J. Fluid Mech, 656 (2010), 82–115 | DOI
[31] Prants S. V., “Dynamical systems theory methods to study mixing and transport in the ocean”, Physica Scripta, 87:3 (2013), 038115 | DOI
[32] Ryzhov E. A., Koshel K. V., Carton X. J., “Passive scalar advection in the vicinity of two point vortices in a deformation flow”, European Journal of Mechanics - B/Fluids, 34 (2012), 121–130 | DOI
[33] Govorukhin V. N., “Chislennyi analiz dinamiki raspredelennykh vikhrevykh konfiguratsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 56:8 (2016) | DOI
[34] Govorukhin V. N., Filimonova A. M., “Analiz struktury ploskikh vikhrevykh techenii i ikh izmenenii vo vremeni”, Vychislitelnaya mekhanika sploshnykh sred, 14:4 (2021), 367–376 | DOI
[35] Govorukhin V. N., “An extended and improved particle-spectral method for analysis of unsteady inviscid incompressible flows through a channel of finite length”, Int. J. Numer. Meth. Fluids, 95:4 (2023), 579–602 | DOI
[36] Metcalfe G., Lester D., Trefry M., “A primer on the dynamical systems approach to transport in porous media”, 146, no. 1–2, 2023, 55–84 | DOI
[37] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M.-Izhevsk, 2005, 368 pp.
[38] Ziglin S. L., “Neintegriruemost zadachi o dvizhenii chetyrekh tochechnykh vikhrei”, Doklady Akademii nauk SSSR, 250:6 (1980), 1296–1300
[39] Aref H., “Stability of relative equilibria of three vortices”, Physics of Fluids, 21:9 (2009), 094101 | DOI
[40] Kizner Z., “Stability of point-vortex multipoles revisited”, Physics of Fluids, 23:6 (2011), 064104 | DOI
[41] Rott N., “Three-vortex motion with zero total circulation”, Zeitschrift für angewandte Mathematik und Physik ZAMP, 40:4 (1989), 1989 | DOI
[42] Арнольд В. И., Козлов В. В., Нейштадт А. И. “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Itogi nauki i tekhniki, Sovremennye problemy matematiki Fundamentalnye napravleniya», 3, VINITI, M., 1985, 5–290
[43] De La Yave R., Vvedenie v KAM-teoriyu, Institut kompyuternykh issledovanii, M.-Izhevsk, 2003, 176 pp.
[44] Govorukhin V. N., “O vybore metoda integrirovaniya uravnenii dvizheniya mnozhestva zhidkikh chastits”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:4 (2014), 697–710 | DOI
[45] Hairer E., Wanner G., Lubich C., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer, Berlin, Heidelberg, 2002, 515 pp. | DOI
[46] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii: Nezhestkie zadachi, Mir, M., 1990, 512 pp.
[47] Verner J. H., “Numerically optimal Runge–Kutta pairs with interpolants”, Numerical Algorithms, 53:2–3 (2010), 383–396 | DOI
[48] Prince P. J., Dormand J. R., “High order embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, 7:1 (1981), 67–75 | DOI
[49] Govorukhin V., ode87 Integrator, MATLAB Central File Exchange. Retrieved February 28, 2023 https://www.mathworks.com/matlabcentral/fileexchange/3616-ode87-integrator