Transfer of passive particles in the velocity field of vortex tripole moving on a plane
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 286-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this article is to study the transport of passive particles in the velocity field of a vortex tripole with a change in the parameter that determines the speed of the configuration movement. A structure consisting of a central vortex and satellite vortices rotating around it with the opposite vorticity is understood as a tripole. We employ a system of three point vortices, the most simple mathematical representation of a vortex tripole, which may be expressed as a system of nonlinear ordinary differential equations with a parameter. Consideration is limited to a particular case of a tripole with zero total vorticity. The influence of the speed values of vortex configuration movement on the processes of passive particle transport has been studied. Methods. The study was carried out numerically using algorithms based on the dynamical systems approaches including the construction of the Poincare map and the analysis of the dynamics of marker particles. Were carried out long times calculations, corresponding to hundreds and thousands of turns around the tripole center. Integrators of high orders of accuracy were used to solve the Cauchy problems, which made it possible to adequacy of the calculation result control. Results. We found that transferring passive particles is fundamentally different depending on the speed of the tripole. A vast zone of chaotic dynamics forms in the neighborhood of the vortices when the velocity is low. This zone slowly shifts along with the tripole. There are subregions of active and slow mixing inside the chaos region. The possible stages of particle dynamics are: transfer from the region to the right of the tripole to the area to the left, vigorous mixing near the vortices, and slowly drifting to the region to the left of the tripole. At a high speed of vortex configuration in the entire chaotic region, the particles are strongly mixed. The vortex tripole removes particles from the vicinity of its initial position over long distances and practically does not capture new particles along its path. In intermediate situations, both processes can be realized at varying degrees. Conclusion. Non-trivial scenarios for the transport of passive particles by a vortex tripole, which can also occur in real vortex configurations of fluids, have been discovered and described.
Keywords: vortex flows, system of point vortices, particle transfer, chaotic mixing, Nonlinear systems, chaos.
@article{IVP_2023_31_3_a4,
     author = {V. N. Govorukhin},
     title = {Transfer of passive particles in the velocity field of vortex tripole moving on a plane},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {286--304},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a4/}
}
TY  - JOUR
AU  - V. N. Govorukhin
TI  - Transfer of passive particles in the velocity field of vortex tripole moving on a plane
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 286
EP  - 304
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a4/
LA  - ru
ID  - IVP_2023_31_3_a4
ER  - 
%0 Journal Article
%A V. N. Govorukhin
%T Transfer of passive particles in the velocity field of vortex tripole moving on a plane
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 286-304
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a4/
%G ru
%F IVP_2023_31_3_a4
V. N. Govorukhin. Transfer of passive particles in the velocity field of vortex tripole moving on a plane. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 286-304. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a4/

[1] van Heijst G. J. F., Kloosterziel R. C., “Tripolar vortices in a rotating fluid”, Nature, 338:6216 (1989), 569–571 | DOI

[2] Kloosterziel R. C., van Heijst G. J. F., “An experimental study of unstable barotropic vortices in a rotating fluid”, J. Fluid Mech, 223 (1991), 1–24 | DOI

[3] Carnevale G. F., Kloosterziel R. C., “Emergence and evolution of triangular vortices”, J. Fluid Mech, 259 (1994), 305–331 | DOI

[4] Trieling R. R., van Heijst G. J. F., Kizner Z., “Laboratory experiments on multipolar vortices in a rotating fluid”, Physics of Fluids, 22:9 (2010), 094104 | DOI

[5] Rostami M., Zeitlin V., “Evolution of double-eye wall hurricanes and emergence of complex tripolar end states in moist-convective rotating shallow water model”, Physics of Fluids, 34:6 (2022), 066602 | DOI

[6] Carton X., Legras B., “The life-cycle of tripoles in two-dimensional incompressible flows”, J. Fluid Mech, 267 (1994), 53–82 | DOI

[7] Kizner Z., Khvoles R., “The tripole vortex: Experimental evidence and explicit solutions”, Phys. Rev. E, 70:1 (2004), 016307 | DOI

[8] Viúdez A., “A stable tripole vortex model in two-dimensional Euler flows”, J. Fluid Mech, 878 (2019), R5 | DOI

[9] Kirkhgof G., Mekhanika: Lektsii po matematicheskoi fizike, Izd-vo AN SSSR, M., 1962, 404 pp.

[10] Betchelor Dzh., Vvedenie v dinamiku zhidkosti, Mir, M., 1973, 760 pp.

[11] Helmholtz H., “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, Journal für die reine und angewandte Mathematik, 55 (1858), 25–55 | DOI

[12] Aref H., “Motion of three vortices”, Physics of Fluids, 22:3 (1979), 393–400 | DOI

[13] Borisov A. V., Mamaev I. S., Vaskina A. V., “Novye otnositelnye ravnovesiya v sisteme trekh tochechnykh vikhrei v krugovoi oblasti i ikh ustoichivost”, Nelineinaya dinamika, 7:1 (2011), 119–138 | DOI

[14] Kuznetsov L., Zaslavsky G. M., “Passive particle transport in three-vortex flow”, Phys. Rev. E, 61:4 (2000), 3777–3792 | DOI

[15] Leoncini X., Kuznetsov L., Zaslavsky G. M., “Motion of three vortices near collapse”, Physics of Fluids, 12:8 (2000), 1911–1927 | DOI

[16] Yim H., Kim S.-C., Sohn S.-I., “Motion of three geostrophic Bessel vortices”, Physica D: Nonlinear Phenomena, 441 (2022), 133509 | DOI

[17] Gröbli W., “Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden”, Vierteljahrsch. d. Naturforsch. Geselsch, 22 (1877), 129–165

[18] Novikov E. A., “Dinamika i statistika sistemy vikhrei”, ZhETF, 68:5 (1975), 1868–1882

[19] Velasco Fuentes O. U., van Heijst G. J. F., van Lipzig N. P. M., “Unsteady behaviour of a topography-modulated tripole”, J. Fluid Mech, 307 (1996), 11–41 | DOI

[20] Gudimenko A. I., Zakharenko A. D., “Dvizhenie trekh vikhrei s nulevoi summarnoi intensivnostyu”, Prikladnaya mekhanika i tekhnicheskaya fizika, 51:3 (2010), 55–65

[21] Aref H., “Stirring by chaotic advection”, J. Fluid Mech, 143 (1984), 1–21

[22] Govorukhin V. N., Morgulis A., Yudovich V. I., Zaslavsky G. M., “Chaotic advection in compressible helical flow”, Phys. Rev. E, 60:3 (1999), 2788–2798 | DOI

[23] Borisov A. V., Mamaev I. S., Ramodanov S. M., “Osnovnye printsipy i modeli dinamicheskoi advektsii”, Doklady Akademii nauk, 432:1 (2010), 41–44

[24] Ryzhov E. A., Koshel K. V., “Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow”, Chaos, 25:10 (2015), 103108 | DOI

[25] Koshel K. V., Sokolovskiy M. A., Davies P. A., “Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle”, Fluid Dynamics Research, 40:10 (2008), 695–736 | DOI

[26] Aref H., Blake J. R., Budišić M., Cardoso S. S. S., Cartwright J. H. E., Clercx H. J. H., El Omari K., Feudel U., Golestanian R., Gouillart E., van Heijst G. F., Krasnopolskaya T. S., Le Guer Y., MacKay R. S., Meleshko V. V., Metcalfe G., Mezić I., De Moura A. P. S., Piro O., Speetjens M. F. M., Sturman R., Thiffeault J.-L., Tuval I., “Frontiers of chaotic advection”, Rev. Mod. Phys., 89:2 (2017), 025007 | DOI

[27] Govorukhin V. N., “Chislennoe issledovanie dinamicheskoi sistemy, porozhdaemoi CABC vektornym polem”, Izvestiya vuzov. PND, 28:6 (2020), 633–642

[28] Petrovskaya N. V., “Konechnomernye modeli dinamiki vikhrevykh techenii idealnoi zhidkosti v kvadratnoi oblasti”, Izvestiya vuzov. PND, 17:6 (2009), 159–172

[29] Delbende I., Selçuk C., Rossi M., “Nonlinear dynamics of two helical vortices: A dynamical system approach”, 6, no. 8, 084701 | DOI

[30] Sengupta T. K., Singh N., Suman V. K., “Dynamical system approach to instability of flow past a circular cylinder”, J. Fluid Mech, 656 (2010), 82–115 | DOI

[31] Prants S. V., “Dynamical systems theory methods to study mixing and transport in the ocean”, Physica Scripta, 87:3 (2013), 038115 | DOI

[32] Ryzhov E. A., Koshel K. V., Carton X. J., “Passive scalar advection in the vicinity of two point vortices in a deformation flow”, European Journal of Mechanics - B/Fluids, 34 (2012), 121–130 | DOI

[33] Govorukhin V. N., “Chislennyi analiz dinamiki raspredelennykh vikhrevykh konfiguratsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 56:8 (2016) | DOI

[34] Govorukhin V. N., Filimonova A. M., “Analiz struktury ploskikh vikhrevykh techenii i ikh izmenenii vo vremeni”, Vychislitelnaya mekhanika sploshnykh sred, 14:4 (2021), 367–376 | DOI

[35] Govorukhin V. N., “An extended and improved particle-spectral method for analysis of unsteady inviscid incompressible flows through a channel of finite length”, Int. J. Numer. Meth. Fluids, 95:4 (2023), 579–602 | DOI

[36] Metcalfe G., Lester D., Trefry M., “A primer on the dynamical systems approach to transport in porous media”, 146, no. 1–2, 2023, 55–84 | DOI

[37] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M.-Izhevsk, 2005, 368 pp.

[38] Ziglin S. L., “Neintegriruemost zadachi o dvizhenii chetyrekh tochechnykh vikhrei”, Doklady Akademii nauk SSSR, 250:6 (1980), 1296–1300

[39] Aref H., “Stability of relative equilibria of three vortices”, Physics of Fluids, 21:9 (2009), 094101 | DOI

[40] Kizner Z., “Stability of point-vortex multipoles revisited”, Physics of Fluids, 23:6 (2011), 064104 | DOI

[41] Rott N., “Three-vortex motion with zero total circulation”, Zeitschrift für angewandte Mathematik und Physik ZAMP, 40:4 (1989), 1989 | DOI

[42] Арнольд В. И., Козлов В. В., Нейштадт А. И. “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Itogi nauki i tekhniki, Sovremennye problemy matematiki Fundamentalnye napravleniya», 3, VINITI, M., 1985, 5–290

[43] De La Yave R., Vvedenie v KAM-teoriyu, Institut kompyuternykh issledovanii, M.-Izhevsk, 2003, 176 pp.

[44] Govorukhin V. N., “O vybore metoda integrirovaniya uravnenii dvizheniya mnozhestva zhidkikh chastits”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:4 (2014), 697–710 | DOI

[45] Hairer E., Wanner G., Lubich C., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer, Berlin, Heidelberg, 2002, 515 pp. | DOI

[46] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii: Nezhestkie zadachi, Mir, M., 1990, 512 pp.

[47] Verner J. H., “Numerically optimal Runge–Kutta pairs with interpolants”, Numerical Algorithms, 53:2–3 (2010), 383–396 | DOI

[48] Prince P. J., Dormand J. R., “High order embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, 7:1 (1981), 67–75 | DOI

[49] Govorukhin V., ode87 Integrator, MATLAB Central File Exchange. Retrieved February 28, 2023 https://www.mathworks.com/matlabcentral/fileexchange/3616-ode87-integrator