Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_3_a3, author = {A. V. Shabunin}, title = {Spatial and temporal dynamics of the emergence of epidemics in the hybrid {SIRS+V} model of cellular automata}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {271--285}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/} }
TY - JOUR AU - A. V. Shabunin TI - Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 271 EP - 285 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/ LA - ru ID - IVP_2023_31_3_a3 ER -
%0 Journal Article %A A. V. Shabunin %T Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 271-285 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/ %G ru %F IVP_2023_31_3_a3
A. V. Shabunin. Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 271-285. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/
[1] Beili N., Matematika v biologii i meditsine, Mir, M., 1970, 326 pp.
[2] Marchuk G. I., Matematicheskie modeli v immunologii: Vychislitelnye metody i eksperimenty, Nauka, M., 1991, 276 pp.
[3] Hethcote H. W., “The mathematics of infectious diseases”, SIAM Review, 42:4 (2000), 599–653 | DOI
[4] Anderson R., Mei R., Infektsionnye bolezni cheloveka: Dinamika i kontrol, Mir, M., 2004, 784 pp.
[5] Serfling R. E., “Methods for current statistical analysis of excess pneumonia-influenza deaths”, Public Health Reports, 78:6 (1963), 494–506 | DOI
[6] Burkom H. S., Murphy S. P., Shmueli G., “Automated time series forecasting for biosurveillance”, Statistics in Medicine, 26:22 (2007), 4202–4218 | DOI
[7] Pelat C., Boëlle P.-Y., Cowling B. J., Carrat F., Flahault A., Ansart S., Valleron A.-J., “Online detection and quantification of epidemics”, BMC Medical Informatics and Decision Making, 7 (2007), 29 | DOI
[8] Kermack W. O., McKendrick A. G., “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. Lond. A, 115:772 (1927), 700–721 | DOI
[9] Bailey N. T. J., The Mathematical Theory of Infectious Diseases and Its Applications, Griffin, 2nd edition London, 1975, 413 pp.
[10] Boccara N., Cheong K., “Automata network SIR models for the spread of infectious diseases in populations of moving individuals”, Journal of Physics A: Mathematical and General, 25:9 (1992), 2447–2461 | DOI
[11] Sirakoulis G. C., Karafyllidis I., Thanailakis A., “A cellular automaton model for the effects of population movement and vaccination on epidemic propagation”, Ecological Modelling, 133:3 (2000), 209–223 | DOI
[12] Shabunin A. V., “SIRS-model rasprostraneniya infektsii s dinamicheskim regulirovaniem chislennosti populyatsii: Issledovanie metodom veroyatnostnykh kletochnykh avtomatov”, Izvestiya vuzov. PND, 27:2 (2019), 5–20 | DOI
[13] Shabunin A. V., “Sinkhronizatsiya protsessov rasprostraneniya infektsii vo vzaimodeistvuyuschikh populyatsiyakh: Modelirovanie reshetkami kletochnykh avtomatov”, Izvestiya vuzov. PND, 28:4 (2020), 383–396 | DOI
[14] Hamer W. H., “Epidemic disease in England – the evidence of variability and persistence of type”, The Lancet, 1 (1906), 733–739
[15] Gopalsamy K., Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer, Dordrecht, 1992, 502 pp. | DOI
[16] Pepevapyuxa A. Yu., “Nepreryvnaya model trekh stsenariev infektsionnogo protsessa pri faktorakh zapazdyvaniya immunnogo otveta”, Biofizika, 66:2 (2021), 384–407 | DOI
[17] Perevaryukha A. Yu., “Model adaptatsionnogo protivodeistviya indutsirovannoi bioticheskoi sredy v invazionnom protsesse”, Izvestiya vuzov. PND, 30:4 (2022), 436–455 | DOI
[18] Shabunin A. V., “Gibridnaya SIRS-model rasprostraneniya infektsii”, Izvestiya vuzov. PND, 30:6 (2022), 717–731 | DOI
[19] Kobrinskii N. E., Trakhtenberg B. A., Vvedenie v teoriyu konechnykh avtomatov, Fizmatgiz, M., 1962, 405 pp.
[20] Toffoli T., Margolus N., Mashiny kletochnykh avtomatov, Mir, M., 1991, 283 pp.
[21] Vanag V. K., “Issledovanie prostranstvenno raspredelennykh dinamicheskikh sistem metodami veroyatnostnogo kletochnogo avtomata”, UFN, 169:5 (1999), 481–505 | DOI
[22] Provata A., Nicolis G., Baras F., “Oscillatory dynamics in low-dimensional supports: A lattice Lotka–Volterra model”, J. Chem. Phys., 110:17 (1999), 8361–8368 | DOI
[23] Shabunin A. V., Baras F., Provata A., “Oscillatory reactive dynamics on surfaces: A lattice limit cycle model”, Phys. Rev. E, 66:3 (2002), 036219 | DOI
[24] Tsekouras G., Provata A., Baras F., “Waves and their interactions in the lattice Lotka–Volterra mode”, Izvestiya vuzov. PND, 11:2 (2003), 63–71
[25] Boccara N., Cheong K., “Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals”, Journal of Physics A: Mathematical and General, 26:15 (1993), 3707–3717 | DOI
[26] Benyoussef A., HafidAllah N. E., ElKenz A., Ez-Zahraouy H., Loulidi M., “Dynamics of HIV infection on 2D cellular automata”, Physica A, 322 (2003), 506–520 | DOI
[27] Fujisaka H., Yamada T., “Stability theory of synchronized motion in coupled-oscillator systems”, Progress of Theoretical Physics, 69:1 (1983), 32–47 | DOI
[28] Yamada T., Fujisaka H., “Stability theory of synchronized motion in coupled-oscillator systems. II: The mapping approach”, Progress of Theoretical Physics, 70:5 (1983), 1240–1248 | DOI