Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 271-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is to construct a model of infection spread in the form of a lattice of probabilistic cellular automata, which takes into account the inertial nature of infection transmission between individuals. Identification of the relationship between the spatial and temporal dynamics of the model depending on the probability of migration of individuals. Methods. The numerical simulation of stochastic dynamics of the lattice of cellular automata by the Monte Carlo method. Results. A modified SIRS+V model of epidemic spread in the form of a lattice of probabilistic cellular automata is constructed. It differs from standard models by taking into account the inertial nature of the transmission of infection between individuals of the population, which is realized by introducing a "carrier agent" into the model, which viruses act as. The similarity and difference between the dynamics of the cellular automata model and the previously studied mean field model are revealed. Discussion. The model in the form of cellular automata allows us to study the processes of infection spread in the population, including in conditions of spatially heterogeneous distribution of the disease. The latter situation occurs if the probability of migration of individuals is not too high. At the same time, a significant change in the quantitative characteristics of the processes is possible, as well as the emergence of qualitatively new modes, such as the regime of undamped oscillations.
Keywords: Population dynamics, SIRS model, dynamical systems.
@article{IVP_2023_31_3_a3,
     author = {A. V. Shabunin},
     title = {Spatial and temporal dynamics of the emergence of epidemics in the hybrid {SIRS+V} model of cellular automata},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {271--285},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/}
}
TY  - JOUR
AU  - A. V. Shabunin
TI  - Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 271
EP  - 285
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/
LA  - ru
ID  - IVP_2023_31_3_a3
ER  - 
%0 Journal Article
%A A. V. Shabunin
%T Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 271-285
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/
%G ru
%F IVP_2023_31_3_a3
A. V. Shabunin. Spatial and temporal dynamics of the emergence of epidemics in the hybrid SIRS+V model of cellular automata. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 271-285. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a3/

[1] Beili N., Matematika v biologii i meditsine, Mir, M., 1970, 326 pp.

[2] Marchuk G. I., Matematicheskie modeli v immunologii: Vychislitelnye metody i eksperimenty, Nauka, M., 1991, 276 pp.

[3] Hethcote H. W., “The mathematics of infectious diseases”, SIAM Review, 42:4 (2000), 599–653 | DOI

[4] Anderson R., Mei R., Infektsionnye bolezni cheloveka: Dinamika i kontrol, Mir, M., 2004, 784 pp.

[5] Serfling R. E., “Methods for current statistical analysis of excess pneumonia-influenza deaths”, Public Health Reports, 78:6 (1963), 494–506 | DOI

[6] Burkom H. S., Murphy S. P., Shmueli G., “Automated time series forecasting for biosurveillance”, Statistics in Medicine, 26:22 (2007), 4202–4218 | DOI

[7] Pelat C., Boëlle P.-Y., Cowling B. J., Carrat F., Flahault A., Ansart S., Valleron A.-J., “Online detection and quantification of epidemics”, BMC Medical Informatics and Decision Making, 7 (2007), 29 | DOI

[8] Kermack W. O., McKendrick A. G., “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. Lond. A, 115:772 (1927), 700–721 | DOI

[9] Bailey N. T. J., The Mathematical Theory of Infectious Diseases and Its Applications, Griffin, 2nd edition London, 1975, 413 pp.

[10] Boccara N., Cheong K., “Automata network SIR models for the spread of infectious diseases in populations of moving individuals”, Journal of Physics A: Mathematical and General, 25:9 (1992), 2447–2461 | DOI

[11] Sirakoulis G. C., Karafyllidis I., Thanailakis A., “A cellular automaton model for the effects of population movement and vaccination on epidemic propagation”, Ecological Modelling, 133:3 (2000), 209–223 | DOI

[12] Shabunin A. V., “SIRS-model rasprostraneniya infektsii s dinamicheskim regulirovaniem chislennosti populyatsii: Issledovanie metodom veroyatnostnykh kletochnykh avtomatov”, Izvestiya vuzov. PND, 27:2 (2019), 5–20 | DOI

[13] Shabunin A. V., “Sinkhronizatsiya protsessov rasprostraneniya infektsii vo vzaimodeistvuyuschikh populyatsiyakh: Modelirovanie reshetkami kletochnykh avtomatov”, Izvestiya vuzov. PND, 28:4 (2020), 383–396 | DOI

[14] Hamer W. H., “Epidemic disease in England – the evidence of variability and persistence of type”, The Lancet, 1 (1906), 733–739

[15] Gopalsamy K., Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer, Dordrecht, 1992, 502 pp. | DOI

[16] Pepevapyuxa A. Yu., “Nepreryvnaya model trekh stsenariev infektsionnogo protsessa pri faktorakh zapazdyvaniya immunnogo otveta”, Biofizika, 66:2 (2021), 384–407 | DOI

[17] Perevaryukha A. Yu., “Model adaptatsionnogo protivodeistviya indutsirovannoi bioticheskoi sredy v invazionnom protsesse”, Izvestiya vuzov. PND, 30:4 (2022), 436–455 | DOI

[18] Shabunin A. V., “Gibridnaya SIRS-model rasprostraneniya infektsii”, Izvestiya vuzov. PND, 30:6 (2022), 717–731 | DOI

[19] Kobrinskii N. E., Trakhtenberg B. A., Vvedenie v teoriyu konechnykh avtomatov, Fizmatgiz, M., 1962, 405 pp.

[20] Toffoli T., Margolus N., Mashiny kletochnykh avtomatov, Mir, M., 1991, 283 pp.

[21] Vanag V. K., “Issledovanie prostranstvenno raspredelennykh dinamicheskikh sistem metodami veroyatnostnogo kletochnogo avtomata”, UFN, 169:5 (1999), 481–505 | DOI

[22] Provata A., Nicolis G., Baras F., “Oscillatory dynamics in low-dimensional supports: A lattice Lotka–Volterra model”, J. Chem. Phys., 110:17 (1999), 8361–8368 | DOI

[23] Shabunin A. V., Baras F., Provata A., “Oscillatory reactive dynamics on surfaces: A lattice limit cycle model”, Phys. Rev. E, 66:3 (2002), 036219 | DOI

[24] Tsekouras G., Provata A., Baras F., “Waves and their interactions in the lattice Lotka–Volterra mode”, Izvestiya vuzov. PND, 11:2 (2003), 63–71

[25] Boccara N., Cheong K., “Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals”, Journal of Physics A: Mathematical and General, 26:15 (1993), 3707–3717 | DOI

[26] Benyoussef A., HafidAllah N. E., ElKenz A., Ez-Zahraouy H., Loulidi M., “Dynamics of HIV infection on 2D cellular automata”, Physica A, 322 (2003), 506–520 | DOI

[27] Fujisaka H., Yamada T., “Stability theory of synchronized motion in coupled-oscillator systems”, Progress of Theoretical Physics, 69:1 (1983), 32–47 | DOI

[28] Yamada T., Fujisaka H., “Stability theory of synchronized motion in coupled-oscillator systems. II: The mapping approach”, Progress of Theoretical Physics, 70:5 (1983), 1240–1248 | DOI