Coupled economic oscillations - synchronization dynamical model
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 254-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is the research of the dynamical processes and in particular the phenomenon of the synchronization in an ensemble of coupled chaotic economic oscillators. Methods. The research methods are the qualitative and numerical methods of the theory of nonlinear dynamical systems and the theory of the bifurcations. Results. The nonlinear model of economic oscillator as the system of automatic control are considered. Such kind of general economic models are unsuitable for getting some concrete economic estimations and recommendations. But such kind models are very useful for a development the theory of the economic cycles, theory of the generation, interactions, synchronization of the cycles and so on. Our numerical experiments demonstrated a good enough qualitative similarity of an chaotic economic oscillations in our model and real economic cycles. The phenomen of the synchronization of the chaotic oscillations in the ensemble of coupled economic oscillators are considered, however the accuracy of the synchronization depends with couplings essentially.
Keywords: economic oscillation, dynamical chaos, synchronization.
@article{IVP_2023_31_3_a2,
     author = {V. V. Matrosov and V. D. Shalfeev},
     title = {Coupled economic oscillations - synchronization dynamical model},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {254--270},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a2/}
}
TY  - JOUR
AU  - V. V. Matrosov
AU  - V. D. Shalfeev
TI  - Coupled economic oscillations - synchronization dynamical model
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 254
EP  - 270
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a2/
LA  - ru
ID  - IVP_2023_31_3_a2
ER  - 
%0 Journal Article
%A V. V. Matrosov
%A V. D. Shalfeev
%T Coupled economic oscillations - synchronization dynamical model
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 254-270
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a2/
%G ru
%F IVP_2023_31_3_a2
V. V. Matrosov; V. D. Shalfeev. Coupled economic oscillations - synchronization dynamical model. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 254-270. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a2/

[1] Samuelson P. E., Nordkhaus V. D., Ekonomika, Izdatelskii dom «Vilyams», M., 2000, 672 pp.

[2] Vechkanov G. S., Vechkanova G. R., Makroekonomika, Piter, SPb., 2002, 412 pp.

[3] Kuznetsov Yu. A., “Matematicheskoe modelirovanie ekonomicheskikh tsiklov: fakty, kontseptsii, rezultaty”, Ekonomicheskii analiz: teoriya i praktika, 10:17 (224) (2011), 50–61

[4] Kuznetsov Yu. A., “Matematicheskoe modelirovanie ekonomicheskikh tsiklov: fakty, kontseptsii, rezultaty (okonchanie)”, Ekonomicheskii analiz: teoriya i praktika, 10:18 (225) (2011), 42–56

[5] Lebedeva A. S., “Genezis teorii ekonomicheskogo tsikla”, Mezhdunarodnyi nauchno-issledovatelskii zhurnal, 2013, no. 8–3 (15), 31–34

[6] Lopes A. M., Machado J. A. T., Huffstot J. S., Mata M. E., “Dynamical analysis of the global business-cycle synchronization”, PLoS ONE, 13:2 (2018), e0191491

[7] Oman W., “The synchronization of business cycles and financial cycles in Euro area”, International Journal of Central Banking, 15:1 (2019), 327–362

[8] Guegan D., “Chaos in economics and finance”, Annual Reviews in Control, 33:1 (2009), 89–93 | DOI

[9] Volos C., Kyprianidis I., Stouboulos I. N., “Synchronization phenomena in coupled nonlinear systems applied in economic cycles”, WSEAS Transactions on Systems, 11:12 (2012), 681

[10] Matrosov V. V., Shalfeev V. D., “Modelirovanie ekonomicheskikh i finansovykh tsiklov: generatsiya i sinkhronizatsiya”, Izvestiya vuzov. PND, 29:4 (2021), 515–537 | DOI

[11] Matrosov V. V., Shalfeev V. D., “Modelirovanie protsessov sinkhronizatsii biznes-tsiklov v ansamble svyazannykh ekonomicheskikh ostsillyatorov”, Izvestiya vuzov. Radiofizika, 64:10 (2021), 833–843 | DOI

[12] McCullen N. J., Ivanchenko M. V., Shalfeev V. D., Gale W. F., “A dynamical model of decision-making behavior in a network of consumers with applications to energy choices”, International Journal of Bifurcation and Chaos, 21:9 (2011), 2467–2480 | DOI

[13] Ponomarenko V. P., “Modelirovanie evolyutsii dinamicheskikh rezhimov v avtogeneratornoi sisteme s chastotnym upravleniem”, Izvestiya vuzov. PND, 7:5 (1997), 44–55

[14] Ponomarenko V. P., Zaulin I. A., “Dinamika avtogeneratora, upravlyaemogo petlei avtopodstroiki s invertirovannoi kharakteristikoi diskriminatora”, Radiotekhnika i elektronika, 42:7 (1997), 828–835

[15] Kasatkin D. V., Matrosov V. V., “Khaoticheskie kolebaniya v dvukh kaskadno svyazannykh ostsillyatorakh s chastotnym upravleniem”, Pisma v ZhTF, 32:8 (2006), 71–77

[16] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981, 568 pp.

[17] Belyakov L. A., “O strukture bifurkatsionnykh mnozhestv v sistemakh s petlei separatrisy sedlo-fokusa”, IX Mezhdunarodnaya konferentsiya po nelineinym kolebaniyam: Tez. dokl., IM AN USSR, Kiev, 1981, 57

[18] Schüler Y. S., Hiebert P., Peltonen T. A., “Characterising the financial cycle: a multivariate and time-varying approach”, ECB Working Paper Series, European Central Bank, Frankfurt am Main, 2015, 1846 | DOI

[19] Shalfeev V. D., Matrosov V. V., Nelineinaya dinamika sistem fazovoi sinkhronizatsii, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2013, 366 pp.