Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_2_a2, author = {E. V. Kurilova and M. P. Kulakov and E. Ya. Frisman}, title = {Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {143--169}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/} }
TY - JOUR AU - E. V. Kurilova AU - M. P. Kulakov AU - E. Ya. Frisman TI - Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 143 EP - 169 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/ LA - ru ID - IVP_2023_31_2_a2 ER -
%0 Journal Article %A E. V. Kurilova %A M. P. Kulakov %A E. Ya. Frisman %T Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 143-169 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/ %G ru %F IVP_2023_31_2_a2
E. V. Kurilova; M. P. Kulakov; E. Ya. Frisman. Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 2, pp. 143-169. http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/
[1] Frisman E. Ya., Kulakov M. P., Revutskaya O. L., Zhdanova O. L., Neverova G. P., “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniyai modelirovanie, 11:1 (2019), 119–151 | DOI | MR
[2] Mukhopadhyay B., Bhattacharyya R., “Role of predator switching in an eco-epidemiological model with disease in the prey”, Ecological Modelling, 220:7 (2009), 931–939 | DOI
[3] Saifuddin M., Biswas S., Samanta S., Sarkar S., Chattopadhyay J., “Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator”, Chaos, Solitons , 91 (2016), 270–285 | DOI | MR | Zbl
[4] Jansen V. A. A., “The dynamics of two diffusively coupled predator–prey populations”, Theoretical Population Biology, 59:2 (2001), 119–131 | DOI | Zbl
[5] Liu Y., The Dynamical Behavior of a Two Patch Predator-Prey Model, College of William and Mary, Theses, Dissertations, Master Projects Williamsburg, 2010, 46 pp.
[6] Saha S., Bairagi N., Dana S. K., “Chimera states in ecological networkunder weighted mean-field dispersal of species”, Frontiers in AppliedMathematics and Statistics, 5 (2019), 15 | DOI | Zbl
[7] Shen Y., Hou Z., Xin H., “Transition to burst synchronization in coupled neuron networks”, Physical Review E, 77:3 (2008), 031920 | DOI
[8] Bakhanova Yu. V., Kazakov A. O., Korotkov A. G., “Spiralnyi khaos vmodelyakh tipa Lotki–Volterry”, Zhurnal Srednevolzhskogo matematicheskogoobschestva, 19:2 (2017), 13–24 | DOI | Zbl
[9] Bakhanova Y. V., Kazakov A. O., Korotkov A. G., Levanova T. A.,Osipov G. V., “Spiral attractors as the root of a new type of «bursting activity»in the Rosenzweig–MacArthur model”, The European Physical JournalSpecial Topics, 227:7–9 (2018), 959–970 | DOI
[10] Huang T., Zhang H., “Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system”, Chaos, Solitons , 91 (2016), 92–107 | DOI | MR | Zbl
[11] Banerjee M., Mukherjee N., Volpert V., “Prey-predator model with a nonlocal bistable dynamics of prey”, Mathematics, 6:3 (2018), 41 | DOI | MR | Zbl
[12] Yao Y., Song T., Li Z., “Bifurcations of a predator–prey system with cooperative hunting and Holling III functional response”, NonlinearDynamics, 110:1 (2022), 915–932 | DOI | MR
[13] Smirnov D., “Revealing direction of coupling between neuronal oscillators from time series: Phase dynamics modeling versus partial directed coherence”, Chaos: An Interdisciplinary Journal of NonlinearScience, 17:1 (2007), 013111 | DOI | MR | Zbl
[14] Dahasert N., Öztürk İ., Kiliç R., “Experimental realizations of the HR neuron model with programmable hardware and synchronization applications”, Nonlinear Dynamics, 70:4 (2012), 2343–2358 | DOI | MR
[15] Wang L., Liu S., Zeng Y., “Diversity of firing patterns in a two-compartment model neuron: Using internal time delay as an independent variable”, Neural Network World, 23:3 (2013), 243–254 | DOI
[16] Santos M. S., Protachevicz P. R., Iarosz K. C., Caldas I. L.,Viana R. L., Borges F. S., Ren H.-P., Szezech Jr. J. D., Batista A. M.,Grebogi C., “Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network”, Chaos: An InterdisciplinaryJournal of Nonlinear Science, 29:4 (2019), 043106 | DOI | MR | Zbl
[17] Izhikevich E. M., “Neural excitability, spiking and bursting”, International Journal of Bifurcation and Chaos, 10:6 (2000), 1171–1266 | DOI | MR | Zbl
[18] Han X., Jiang B., Bi Q., “Symmetric bursting of focus–focus type in the controlled Lorenz system with two time scales”, Physics Letters A, 373:40 (2009), 3643–3649 | DOI | Zbl
[19] Gu H., Pan B., Xu J., “Bifurcation scenarios of neural firingpatterns across two separated chaotic regions as indicated by theoreticaland biological experimental models”, Abstract and Applied Analysis, S141 (2013), 374674 | DOI | MR | Zbl
[20] Chen J., Li X., Hou J., Zuo D., “Bursting oscillation and bifurcation mechanism in fractional-order Brusselator with two different time scales”, Journal of Vibroengineering, 19:2 (2017), 1453–1464 | DOI
[21] Makeeva A. A., Dmitrichev A. S., Nekorkin V. I., “Tsikly-utki itory-utki v slaboneodnorodnom ansamble neironov FittsKhyu-Nagumos vozbuzhdayuschimi svyazyami”, Izvestiya vuzov. PND, 28:5 (2020), 524–546 | DOI
[22] Holling C. S., “Some characteristics of simple types of predationand parasitism”, The Canadian Entomologist, 91:7 (1959), 385–398 | DOI
[23] Holling C. S., “The functional response of predators to prey densityand its role in mimicry and population regulation”, The Memoirs of the Entomological Society of Canada, 97:S45 (1965), 5–60 | DOI
[24] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 181 pp.
[25] Bazykin A. D., Nonlinear Dynamics of Interacting Populations, World Scientific, Vol 11 New–Jersey, London, Hong Kong, 1998, 216 pp. | DOI | MR
[26] Rosenzweig M. L., MacArthur R. H., “Graphical representationand stability conditions of predator–prey interactions”, The American Naturalist, 97:895 (1963), 209–223 | DOI
[27] Rinaldi S., Muratori S., “Slow-fast limit cycles in predator-prey models”, Ecological Modelling, 61:3–4 (1992), 287–308 | DOI
[28] Kulakov M. P., Kurilova E. V., Frisman E. Ya., “Sinkhronizatsiya,tonicheskaya i pachechnaya dinamika v modeli dvukh soobschestv «khischnik–zhertva»,svyazannykh migratsiyami khischnika”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 588–611 | DOI
[29] Kurilova E. V., Kulakov M. P., Frisman E. Ya., “Posledstviya sinkhronizatsii kolebanii chislennostei v dvukh vzaimodeistvuyuschikh soobschestvakh tipa«khischnik–zhertva» pri nasyschenii khischnika i limitirovanii chislennosti zhertvy”, Informatika i sistemy upravleniya, 2015, no. 3(45), 24–34
[30] Kurilova E. V., Kulakov M. P., “Kvaziperiodicheskie rezhimy dinamiki v modeli migratsionno svyazannykh soobschestv «Khischnik–zhertva»”, Regionalnye problemy, 23:2 (2020), 3–11 | DOI
[31] Dhooge A., Govaerts W., Kuznetsov Y. A., Meijer H. G. E., Sautois B., “New features of the software MatCont for bifurcation analysis of dynamical systems”, Mathematical and Computer Modelling of Dynamical Systems, 14:2 (2008), 147–175 | DOI | MR | Zbl
[32] Benoît E., Callot J. L., Diener F., Diener M., “Chasse au canard”, Collectanea Mathematica, 31–32 (1981), 37–119 | MR
[33] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218
[34] Ersöz E. K., Desroches M., Mirasso C. R., Rodrigues S., “Anticipation via canards in excitable systems”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:1 (2019), 013111 | DOI | MR | Zbl
[35] Shilnikov A., Cymbalyuk G., “Homoclinic bifurcations of periodic orbits on a route from tonic spiking to bursting in neuron models”, Regular and Chaotic Dynamics, 9:3 (2004), 281–297 | DOI | MR | Zbl
[36] Kolomiets M. L., Shilnikov A. L., “Metody kachestvennoi teorii dlya modeli Khindmarsh–Rouz”, Nelineinaya dinamika, 6:1 (2010), 23–52 | DOI
[37] Hindmarsh J. L., Rose R. M., “A model of neuronal bursting using three coupled first order differential equations”, Proc. R. Soc. Lond. B, 221:1222 (1984), 87–102 | DOI
[38] Linaro D., Champneys A., Desroches M., Storace M., “Codimension-twohomoclinic bifurcations underlying spike adding in the Hindmarsh–Roseburster”, SIAM Journal on Applied Dynamical Systems, 11:3 (2012), 939–962 | DOI | MR | Zbl