Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 2, pp. 143-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose is to study the periodic regimes of the dynamics for two non-identical predator-prey communities coupled by migrations, associated with the partial synchronization of fluctuations in the abundance of communities. The combination of fluctuations in neighboring sites leads to the regimes that include both fast bursts (bursting oscillations) and slow oscillations (tonic spiking). These types of activity are characterized by a different ratio of synchronous and non-synchronous dynamics of communities in certain periods of time. In this paper, we describe scenarios of the transition between different types of burst activity. These types of dynamics differ from each other not so much in size, shape, and number of spikes in a burst, but in the order of these bursts relative to the slow-fast cycle. Methods. To study the proposed model, we use the bifurcation analysis methods of dynamic systems, as well as geometric methods based on the division of the full system into fast and slow equations (subsystems). Results. We showed that the dynamics of the first subsystem with a slow-fast limit cycle directly determines the dynamics of the second one with burst activity through a smooth dependence of regime on the number of predators and a non-smooth dependence on the number of prey. We constructed the invariant manifolds on which there are parts of dynamics with tonic (slow manifold) and burst (fast manifold) activity of the full system. Conclusion. We described the scenario for bursting with different waveforms, which are determined by the appearance of the fast invariant manifold and the location of its parts relative to the slow-fast cycle. The transitions between different types of burst are accompanied by a change in the oscillation period, the degree of synchronization, and, as a result, the dynamics becomes quasi-periodic when both communities are not synchronous with each other.
Keywords: predator-prey, migration, synchronization, tonic spiking, bursting.
@article{IVP_2023_31_2_a2,
     author = {E. V. Kurilova and M. P. Kulakov and E. Ya. Frisman},
     title = {Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {143--169},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/}
}
TY  - JOUR
AU  - E. V. Kurilova
AU  - M. P. Kulakov
AU  - E. Ya. Frisman
TI  - Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 143
EP  - 169
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/
LA  - ru
ID  - IVP_2023_31_2_a2
ER  - 
%0 Journal Article
%A E. V. Kurilova
%A M. P. Kulakov
%A E. Ya. Frisman
%T Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 143-169
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/
%G ru
%F IVP_2023_31_2_a2
E. V. Kurilova; M. P. Kulakov; E. Ya. Frisman. Mechanisms leading to bursting oscillations in the system of predator-prey communities coupled by migrations. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 2, pp. 143-169. http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a2/

[1] Frisman E. Ya., Kulakov M. P., Revutskaya O. L., Zhdanova O. L., Neverova G. P., “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniyai modelirovanie, 11:1 (2019), 119–151 | DOI | MR

[2] Mukhopadhyay B., Bhattacharyya R., “Role of predator switching in an eco-epidemiological model with disease in the prey”, Ecological Modelling, 220:7 (2009), 931–939 | DOI

[3] Saifuddin M., Biswas S., Samanta S., Sarkar S., Chattopadhyay J., “Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator”, Chaos, Solitons , 91 (2016), 270–285 | DOI | MR | Zbl

[4] Jansen V. A. A., “The dynamics of two diffusively coupled predator–prey populations”, Theoretical Population Biology, 59:2 (2001), 119–131 | DOI | Zbl

[5] Liu Y., The Dynamical Behavior of a Two Patch Predator-Prey Model, College of William and Mary, Theses, Dissertations, Master Projects Williamsburg, 2010, 46 pp.

[6] Saha S., Bairagi N., Dana S. K., “Chimera states in ecological networkunder weighted mean-field dispersal of species”, Frontiers in AppliedMathematics and Statistics, 5 (2019), 15 | DOI | Zbl

[7] Shen Y., Hou Z., Xin H., “Transition to burst synchronization in coupled neuron networks”, Physical Review E, 77:3 (2008), 031920 | DOI

[8] Bakhanova Yu. V., Kazakov A. O., Korotkov A. G., “Spiralnyi khaos vmodelyakh tipa Lotki–Volterry”, Zhurnal Srednevolzhskogo matematicheskogoobschestva, 19:2 (2017), 13–24 | DOI | Zbl

[9] Bakhanova Y. V., Kazakov A. O., Korotkov A. G., Levanova T. A.,Osipov G. V., “Spiral attractors as the root of a new type of «bursting activity»in the Rosenzweig–MacArthur model”, The European Physical JournalSpecial Topics, 227:7–9 (2018), 959–970 | DOI

[10] Huang T., Zhang H., “Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system”, Chaos, Solitons , 91 (2016), 92–107 | DOI | MR | Zbl

[11] Banerjee M., Mukherjee N., Volpert V., “Prey-predator model with a nonlocal bistable dynamics of prey”, Mathematics, 6:3 (2018), 41 | DOI | MR | Zbl

[12] Yao Y., Song T., Li Z., “Bifurcations of a predator–prey system with cooperative hunting and Holling III functional response”, NonlinearDynamics, 110:1 (2022), 915–932 | DOI | MR

[13] Smirnov D., “Revealing direction of coupling between neuronal oscillators from time series: Phase dynamics modeling versus partial directed coherence”, Chaos: An Interdisciplinary Journal of NonlinearScience, 17:1 (2007), 013111 | DOI | MR | Zbl

[14] Dahasert N., Öztürk İ., Kiliç R., “Experimental realizations of the HR neuron model with programmable hardware and synchronization applications”, Nonlinear Dynamics, 70:4 (2012), 2343–2358 | DOI | MR

[15] Wang L., Liu S., Zeng Y., “Diversity of firing patterns in a two-compartment model neuron: Using internal time delay as an independent variable”, Neural Network World, 23:3 (2013), 243–254 | DOI

[16] Santos M. S., Protachevicz P. R., Iarosz K. C., Caldas I. L.,Viana R. L., Borges F. S., Ren H.-P., Szezech Jr. J. D., Batista A. M.,Grebogi C., “Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network”, Chaos: An InterdisciplinaryJournal of Nonlinear Science, 29:4 (2019), 043106 | DOI | MR | Zbl

[17] Izhikevich E. M., “Neural excitability, spiking and bursting”, International Journal of Bifurcation and Chaos, 10:6 (2000), 1171–1266 | DOI | MR | Zbl

[18] Han X., Jiang B., Bi Q., “Symmetric bursting of focus–focus type in the controlled Lorenz system with two time scales”, Physics Letters A, 373:40 (2009), 3643–3649 | DOI | Zbl

[19] Gu H., Pan B., Xu J., “Bifurcation scenarios of neural firingpatterns across two separated chaotic regions as indicated by theoreticaland biological experimental models”, Abstract and Applied Analysis, S141 (2013), 374674 | DOI | MR | Zbl

[20] Chen J., Li X., Hou J., Zuo D., “Bursting oscillation and bifurcation mechanism in fractional-order Brusselator with two different time scales”, Journal of Vibroengineering, 19:2 (2017), 1453–1464 | DOI

[21] Makeeva A. A., Dmitrichev A. S., Nekorkin V. I., “Tsikly-utki itory-utki v slaboneodnorodnom ansamble neironov FittsKhyu-Nagumos vozbuzhdayuschimi svyazyami”, Izvestiya vuzov. PND, 28:5 (2020), 524–546 | DOI

[22] Holling C. S., “Some characteristics of simple types of predationand parasitism”, The Canadian Entomologist, 91:7 (1959), 385–398 | DOI

[23] Holling C. S., “The functional response of predators to prey densityand its role in mimicry and population regulation”, The Memoirs of the Entomological Society of Canada, 97:S45 (1965), 5–60 | DOI

[24] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 181 pp.

[25] Bazykin A. D., Nonlinear Dynamics of Interacting Populations, World Scientific, Vol 11 New–Jersey, London, Hong Kong, 1998, 216 pp. | DOI | MR

[26] Rosenzweig M. L., MacArthur R. H., “Graphical representationand stability conditions of predator–prey interactions”, The American Naturalist, 97:895 (1963), 209–223 | DOI

[27] Rinaldi S., Muratori S., “Slow-fast limit cycles in predator-prey models”, Ecological Modelling, 61:3–4 (1992), 287–308 | DOI

[28] Kulakov M. P., Kurilova E. V., Frisman E. Ya., “Sinkhronizatsiya,tonicheskaya i pachechnaya dinamika v modeli dvukh soobschestv «khischnik–zhertva»,svyazannykh migratsiyami khischnika”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 588–611 | DOI

[29] Kurilova E. V., Kulakov M. P., Frisman E. Ya., “Posledstviya sinkhronizatsii kolebanii chislennostei v dvukh vzaimodeistvuyuschikh soobschestvakh tipa«khischnik–zhertva» pri nasyschenii khischnika i limitirovanii chislennosti zhertvy”, Informatika i sistemy upravleniya, 2015, no. 3(45), 24–34

[30] Kurilova E. V., Kulakov M. P., “Kvaziperiodicheskie rezhimy dinamiki v modeli migratsionno svyazannykh soobschestv «Khischnik–zhertva»”, Regionalnye problemy, 23:2 (2020), 3–11 | DOI

[31] Dhooge A., Govaerts W., Kuznetsov Y. A., Meijer H. G. E., Sautois B., “New features of the software MatCont for bifurcation analysis of dynamical systems”, Mathematical and Computer Modelling of Dynamical Systems, 14:2 (2008), 147–175 | DOI | MR | Zbl

[32] Benoît E., Callot J. L., Diener F., Diener M., “Chasse au canard”, Collectanea Mathematica, 31–32 (1981), 37–119 | MR

[33] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 5, VINITI, M., 1986, 5–218

[34] Ersöz E. K., Desroches M., Mirasso C. R., Rodrigues S., “Anticipation via canards in excitable systems”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:1 (2019), 013111 | DOI | MR | Zbl

[35] Shilnikov A., Cymbalyuk G., “Homoclinic bifurcations of periodic orbits on a route from tonic spiking to bursting in neuron models”, Regular and Chaotic Dynamics, 9:3 (2004), 281–297 | DOI | MR | Zbl

[36] Kolomiets M. L., Shilnikov A. L., “Metody kachestvennoi teorii dlya modeli Khindmarsh–Rouz”, Nelineinaya dinamika, 6:1 (2010), 23–52 | DOI

[37] Hindmarsh J. L., Rose R. M., “A model of neuronal bursting using three coupled first order differential equations”, Proc. R. Soc. Lond. B, 221:1222 (1984), 87–102 | DOI

[38] Linaro D., Champneys A., Desroches M., Storace M., “Codimension-twohomoclinic bifurcations underlying spike adding in the Hindmarsh–Roseburster”, SIAM Journal on Applied Dynamical Systems, 11:3 (2012), 939–962 | DOI | MR | Zbl