Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 2, pp. 128-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of the article is to illustrate the genesis, meaning and significance of the functional Schroder equation, introduced in the theory of iterations of rational functions, for the theory of deterministic chaos by analytical calculations of exact trajectory solutions, invariant densities and Lyapunov exponents of one-dimensional chaotic maps. We demonstrate the method for solving the functional Schroder equation for various chaotic maps by passing to a topologically conjugate mappings, for which finding the exact trajectory solution is a simpler mathematical procedure. Results of the analytical solution of the Schroder equation for 12 chaotic mappings of various types and the calculation of the corresponding expressions for exact trajectory solutions, invariant densities and Lyapunov exponents are presented. Conclusion is made about the methodological expediency of formulating and solving the Schroder equations by the study of the dynamics of one-dimensional chaotic mappings.
Keywords: iteration theory, Deterministic chaos, one-dimensional maps, Schroder equation, exact solutions.
@article{IVP_2023_31_2_a1,
     author = {V. M. Anikin},
     title = {Representation of exact trajectory solutions for chaotic one-dimensional maps in {Schroder} form},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {128--142},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a1/}
}
TY  - JOUR
AU  - V. M. Anikin
TI  - Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 128
EP  - 142
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a1/
LA  - ru
ID  - IVP_2023_31_2_a1
ER  - 
%0 Journal Article
%A V. M. Anikin
%T Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 128-142
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a1/
%G ru
%F IVP_2023_31_2_a1
V. M. Anikin. Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 2, pp. 128-142. http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a1/

[1] Schröder E., “Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen”, Mathematische Annalen, 2:2 (1870), 317–365 | DOI | MR

[2] Schröder E., “Ueber iterirte Functionen”, Mathematische Annalen, 3:2 (1870), 296–322 | DOI | MR

[3] Milnor Dzh., Golomorfnaya dinamika, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2000, 320 pp.

[4] Paitgen Kh.-O., Rikhter P.-Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993, 176 pp.

[5] Kronover R. M., Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000, 352 pp.

[6] Shreder M., Fraktaly, khaos, stepennye zakony. Miniatyury iz beskonechnogo raya, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001, 528 pp.

[7] Alexander D. S., A History of Complex Dynamics: From Schröder to Fatou and Julia, v. E24, Aspects of Mathematics, Friedr. Vieweg Sohn, Braunschweig, 1994, 165 pp. | DOI | MR

[8] Alexander D. S., Iavernaro F., Rosa A., Early Days in Complex Dynamics: A History of Complex Dynamics in One Variable During 1906–1942, v. 38, History of Mathematics, London Mathematical Society, Providence, RI, London, 2012, 454 pp. | MR

[9] Kuczma M., Choczewski B., Ger R., Iterative Functional Equations, Cambridge University Press, Cambridge, 1990, 576 pp. | DOI | MR

[10] Kuczma M., Functional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warszawa, 1968, 383 pp. | MR

[11] de Brein N. G., Asimptoticheskie metody v analize, Inostrannaya literatura, M., 1961, 248 pp.

[12] Yanpolskii A. R., Giperbolicheskie funktsii, Fizmatgiz, M., 1960, 195 pp.

[13] Billingslei P., Ergodicheskaya teoriya i informatsiya, Mir, M., 1969, 239 pp. | MR

[14] Anikin V. M., Golubentsev A. F., Analiticheskie modeli determinirovannogo khaosa, FIZMATLIT, M., 2007, 328 pp.

[15] Ulam S., Nereshennye matematicheskie zadachi, Nauka, M., 1964, 168 pp.

[16] Ulam S. M., von Neumann J., “On combination of stochastic and deterministic processes”, Bulletin of the American Mathematical Society, 53:11 (1947), 1120 | MR

[17] von Neumann J., Collected Works, v. 5, Macmillan, New York | MR

[18] Shuster G., Determinirovannyi khaos. Vvedenie, Mir, M., 1988, 240 pp. | MR

[19] Ermakov S. M., Metod Monte-Karlo v vychislitelnoi matematike. Vvodnyi kurs, Nevskii Dialekt; BINOM, Laboratoriya znanii, SPb.; M., 2009, 192 pp.

[20] Keipers L., Niderraiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985, 408 pp.

[21] Golubentsev A. F., Anikin V. M., “The explicit solutions of Frobenius-Perron equation for the chaotic infinite maps”, International Journal of Bifurcation and Chaos, 8:5 (1998), 1049–1051 | DOI | MR

[22] Golubentsev A. F., Anikin V. M., “Spetsialnye funktsii v teorii determinirovannogo khaosa”, Izvestiya vuzov. PND, 8:3 (2000), 50–58

[23] Uitteker E. T., Vatson D. N., Kurs sovremennogo analiza, Ch. 2. Transtsendentnye funktsii, Fizmatgiz, M., 1963, 500 pp.

[24] Anikin V. M., Arkadakskii S. S., Remizov A. S., Nesamosopryazhennye lineinye operatory v khaoticheskoi dinamike, ed. V. M. Anikin, Izdatelstvo Saratovskogo universiteta, Saratov, 2015, 96 pp.