Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_2_a1, author = {V. M. Anikin}, title = {Representation of exact trajectory solutions for chaotic one-dimensional maps in {Schroder} form}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {128--142}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a1/} }
TY - JOUR AU - V. M. Anikin TI - Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 128 EP - 142 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a1/ LA - ru ID - IVP_2023_31_2_a1 ER -
V. M. Anikin. Representation of exact trajectory solutions for chaotic one-dimensional maps in Schroder form. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 2, pp. 128-142. http://geodesic.mathdoc.fr/item/IVP_2023_31_2_a1/
[1] Schröder E., “Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen”, Mathematische Annalen, 2:2 (1870), 317–365 | DOI | MR
[2] Schröder E., “Ueber iterirte Functionen”, Mathematische Annalen, 3:2 (1870), 296–322 | DOI | MR
[3] Milnor Dzh., Golomorfnaya dinamika, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2000, 320 pp.
[4] Paitgen Kh.-O., Rikhter P.-Kh., Krasota fraktalov. Obrazy kompleksnykh dinamicheskikh sistem, Mir, M., 1993, 176 pp.
[5] Kronover R. M., Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000, 352 pp.
[6] Shreder M., Fraktaly, khaos, stepennye zakony. Miniatyury iz beskonechnogo raya, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001, 528 pp.
[7] Alexander D. S., A History of Complex Dynamics: From Schröder to Fatou and Julia, v. E24, Aspects of Mathematics, Friedr. Vieweg Sohn, Braunschweig, 1994, 165 pp. | DOI | MR
[8] Alexander D. S., Iavernaro F., Rosa A., Early Days in Complex Dynamics: A History of Complex Dynamics in One Variable During 1906–1942, v. 38, History of Mathematics, London Mathematical Society, Providence, RI, London, 2012, 454 pp. | MR
[9] Kuczma M., Choczewski B., Ger R., Iterative Functional Equations, Cambridge University Press, Cambridge, 1990, 576 pp. | DOI | MR
[10] Kuczma M., Functional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warszawa, 1968, 383 pp. | MR
[11] de Brein N. G., Asimptoticheskie metody v analize, Inostrannaya literatura, M., 1961, 248 pp.
[12] Yanpolskii A. R., Giperbolicheskie funktsii, Fizmatgiz, M., 1960, 195 pp.
[13] Billingslei P., Ergodicheskaya teoriya i informatsiya, Mir, M., 1969, 239 pp. | MR
[14] Anikin V. M., Golubentsev A. F., Analiticheskie modeli determinirovannogo khaosa, FIZMATLIT, M., 2007, 328 pp.
[15] Ulam S., Nereshennye matematicheskie zadachi, Nauka, M., 1964, 168 pp.
[16] Ulam S. M., von Neumann J., “On combination of stochastic and deterministic processes”, Bulletin of the American Mathematical Society, 53:11 (1947), 1120 | MR
[17] von Neumann J., Collected Works, v. 5, Macmillan, New York | MR
[18] Shuster G., Determinirovannyi khaos. Vvedenie, Mir, M., 1988, 240 pp. | MR
[19] Ermakov S. M., Metod Monte-Karlo v vychislitelnoi matematike. Vvodnyi kurs, Nevskii Dialekt; BINOM, Laboratoriya znanii, SPb.; M., 2009, 192 pp.
[20] Keipers L., Niderraiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985, 408 pp.
[21] Golubentsev A. F., Anikin V. M., “The explicit solutions of Frobenius-Perron equation for the chaotic infinite maps”, International Journal of Bifurcation and Chaos, 8:5 (1998), 1049–1051 | DOI | MR
[22] Golubentsev A. F., Anikin V. M., “Spetsialnye funktsii v teorii determinirovannogo khaosa”, Izvestiya vuzov. PND, 8:3 (2000), 50–58
[23] Uitteker E. T., Vatson D. N., Kurs sovremennogo analiza, Ch. 2. Transtsendentnye funktsii, Fizmatgiz, M., 1963, 500 pp.
[24] Anikin V. M., Arkadakskii S. S., Remizov A. S., Nesamosopryazhennye lineinye operatory v khaoticheskoi dinamike, ed. V. M. Anikin, Izdatelstvo Saratovskogo universiteta, Saratov, 2015, 96 pp.