Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_1_a6, author = {I. A. Soloviev and V. V. Klinshov}, title = {Stability thresholds of attractors of the {Hopfield} network}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {75--85}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a6/} }
TY - JOUR AU - I. A. Soloviev AU - V. V. Klinshov TI - Stability thresholds of attractors of the Hopfield network JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 75 EP - 85 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a6/ LA - ru ID - IVP_2023_31_1_a6 ER -
I. A. Soloviev; V. V. Klinshov. Stability thresholds of attractors of the Hopfield network. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a6/
[1] Hopfield J.J., “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. Sci. U. S. A., 79:8 (1982), 2554–2558 | DOI | MR
[2] Hopfield J.J., “Neurons with graded response have collective computational properties like those of two-state neurons”, Proc. Natl. Acad. Sci. U. S. A, 81:10 (1984), 3088–3092. | DOI
[3] Farhat N.H., Psaltis D., Prata A., Paek E., “Optical implementation of the Hopfield model”, Applied Optics, 24:10 (1985), 1469–1475 | DOI
[4] Hoppensteadt F.C., Izhikevich E.M., “Pattern recognition via synchronization in phase-locked loop neural networks”, IEEE Transactions on Neural Networks, 11:3 (2000), 734–738 | DOI | MR
[5] Joya G., Atencia M.A., Sandoval F., “Hopfield neural networks for optimization: study of the different dynamics”, Neurocomputing, 43:1–4 (2002), 219–237 | DOI
[6] Wen U.P., Lan K.M., Shih H.S., “A review of Hopfield neural networks for solving mathematical programming problems”, European Journal of Operational Research, 198:3 (2009), 675–687 | DOI | MR
[7] McEliece R., Posner E., Rodemich E., Venkatesh S., “The capacity of the Hopfield associative memory”, IEEE Transactions on Information Theory, 33:4 (1987), 461–482 | DOI | MR
[8] Storkey A., “Increasing the capacity of a hopfield network without sacrificing functionality”, Artificial Neural Networks — ICANN'97, Lecture Notes in Computer Science, 1327, eds. Gerstner W., Germond A., Hasler M., Nicoud J.D., Springer, Berlin, Heidelberg, 1997, 451–456 | DOI
[9] Krotov D., Hopfield J.J., “Dense associative memory for pattern recognition”, Proceedings of the 30th International Conference on Neural Information Processing Systems (5–10 December 2016, Barcelona, Spain), Curran Associates Inc., New York, 2016, 1180–1188 | DOI
[10] Ramsauer H., Schäfl B., Lehner J., Seidl P., Widrich M., Adler T., Gruber L., Holzleitner M., Pavlović M., Sandve G.K., Greiff V., Kreil D., Kopp M., Klambauer G., Brandstetter J., Hochreiter S., Hopfield networks is all you need, 2020, 94 pp., arXiv: 2008.02217 https://arxiv.org/abs/2008.02217
[11] Klinshov V.V., Nekorkin V.I., Kurths J., “Stability threshold approach for complex dynamical systems”, New Journal of Physics, 18:1 (2016), 013004 | DOI | MR
[12] Menck P.J., Heitzig J., Marwan N., Kurths J., “How basin stability complements the linear-stability paradigm”, Nature Physics, 9:2 (2013), 89–92 | DOI
[13] Chakraborty A., Alam M., Dey V., Chattopadhyay A., Mukhopadhyay D., Adversarial attacks and defences: A survey, 2018, 31 pp., arXiv: 1810.00069 https://arxiv.org/abs/1810.00069
[14] Amari S.I., Maginu K., “Statistical neurodynamics of associative memory”, Neural Networks, 1:1 (1988), 63–73 | DOI