Dynamic damping of vibrations of a solid body mounted on viscoelastic supports
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 1, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the problem of damping vibrations of a solid body mounted on viscoelastic supports is an urgent task. The paper considers the problem of reducing the level of vibrations on the paws of electric machines using dynamic vibration dampers. For this purpose, the paw of electric machines is represented in the form of a subamortized solid body with six degrees of freedom mounted on viscoelastic supports. The aim of the work is to develop calculation methods and algorithms for studying the oscillations of the resonant amplitudes of a solid body mounted on viscoelastic supports. Dynamic oscillation (vibration) damping method consists in attaching a system to the protected object, the reactions of which reduce the scope of vibration of the object at the points of attachment of this system. Applying the D'Alembert principle, the equations of small vibrations of a solid with dampers are derived. For practical calculations, a simplified system of equations was obtained that takes into account only three degrees of freedom. Numerical calculations were carried out on a computer to determine the amplitude-frequency characteristics of the main body. Numerical experiments were carried out using the Matlab mathematical package. Considering that a solid body is characterized by vibration, as a rule, in a continuous and wide frequency range, therefore, dynamic vibration dampers are used to protect a solid body mounted on viscoelastic supports. It was found that when the damper is set at a frequency of 50 Hz, the vibration level at the left end of the frequency interval of rotary motion of the rotor-converter, decreases to 37.5 dB, and at the right end - to 42.5 dB. At a frequency of 50 Hz, the paws do not oscillate. When setting the dampers to a frequency of 51.5 Hz, the maximum vibration level does not exceed 40 dB. The optimal setting of the dampers is within the frequency of 50.60... 50.70 Hz, and a two-mass extinguisher is 10-15% more efficient than a single-mass one. Thus, the paper sets the tasks of dynamic damping of vibrations of a solid body mounted on viscoelastic supports, develops solution methods and an algorithm for determining the dynamic state of a solid body with passive vibration of the object in question.
Keywords: vibration, dynamic damper, construction, viscoelastic support, shock absorber.
@article{IVP_2023_31_1_a5,
     author = {I. I. Safarov and M. Kh. Teshaev},
     title = {Dynamic damping of vibrations of a solid body mounted on viscoelastic supports},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a5/}
}
TY  - JOUR
AU  - I. I. Safarov
AU  - M. Kh. Teshaev
TI  - Dynamic damping of vibrations of a solid body mounted on viscoelastic supports
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 63
EP  - 74
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a5/
LA  - ru
ID  - IVP_2023_31_1_a5
ER  - 
%0 Journal Article
%A I. I. Safarov
%A M. Kh. Teshaev
%T Dynamic damping of vibrations of a solid body mounted on viscoelastic supports
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 63-74
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a5/
%G ru
%F IVP_2023_31_1_a5
I. I. Safarov; M. Kh. Teshaev. Dynamic damping of vibrations of a solid body mounted on viscoelastic supports. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a5/

[1] Vibratsii v tekhnike: Spravochnik, v. 6, Zaschita ot vibratsii i udarov, ed. K. V. Frolov, Mashinostroenie, M., 1981, 456 pp.

[2] Tokarev M. F., Talitskii E. N., Frolov V. A., Mekhanicheskie vozdeistviya i zaschita radioelektronnoi apparatury: Ucheb. posobie dlya vuzov, Radio i svyaz, M, 1984, 224 pp.

[3] Nashif A., Dzhouns D., Khenderson Dzh., Dempfirovanie kolebanii, Mir, M., 1988, 448 pp.

[4] Teshaev M. K., Safarov I. I., Mirsaidov M., “Oscillations of multilayer viscoelastic composite toroidal pipes”, Journal of the Serbian Society for Computational Mechanics, 13:2 (2019), 104–115 | DOI

[5] Gludkin O. P., Metody i ustroistva ispytanii RES i EVS, Vysshaya shkola, M., 1991, 336 pp.

[6] Gludkin O. P., Engalychev A. N., Korobov A. I., Tregubov Yu. V., Ispytaniya radioelektronnoi, elektronno-vychislitelnoi apparatury i ispytatelnoe oborudovanie, Radio i svyaz, M., 1987, 272 pp.

[7] {Lysenko A. V., Goryachev N. V., Grab I. D., Kemalov B. K., Yurkov N. K.} Kratkii obzor metodov imitatsionnogo modelirovaniya, Sovremennye informatsionnye tekhnologii, 2011, no. 14, 171–176

[8] Fedorov V., Sergeev N., Kondrashin A., Kontrol i ispytaniya vproektirovanii i proizvodstve radioelektronnykh sredstv, Tekhnosfera, M., 2005, 502 pp.

[9] GOST 30630.1.2-99. Metody ispytanii na stoikost k mekhanicheskim vneshnim vozdeistvuyuschim faktoram mashin, priborov i drugikh tekhnicheskikh izdelii. Ispytaniya na vozdeistvie vibratsii. Vved. 01.01.2001, Mezhgosudarstvennyi Sovet po standartizatsii, metrologii i sertifikatsii, Minsk, 1999, 35 pp.

[10] Kalenkovich N. I., Radioelektronnaya apparatura i osnovy ee konstruktorskogo proektirovaniya: Uchebno-metodicheskoe posobie, BGUIR, Minsk, 2008, 200 pp.

[11] Yurkov N. K., Tekhnologiya radioelektronnykh sredstv, Izd-vo PGU, Penza, 2012, 640 pp.

[12] Kofanov Yu. N., Shalumov A. S., Zhuravskii V. G., Goldin V. V., Matematicheskoe modelirovanie radioelektronnykh sredstv pri mekhanicheskikh vozdeistviyakh, Radio i svyaz, M., 2000, 226 pp.

[13] Capatti M. C., Carbonari S., Gara F., Roia D., Dezi F., “Experimental study on instrumented micropiles”, 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) (13–14 June 2016, Bari, Italy), IEEE, New York, 2016, 16125758 | DOI

[14] Adamo F., Attivissimo F., Lanzolla A. M. L., Saponaro F., Cervellera V., “Assessment of the uncertainty in human exposure to vibration: An experimental study”, IEEE Sensors Journal, 14:2 (2014), 474–481 | DOI

[15] Palacios-Quiñonero F., Karimi H. R., Rubió-Massegú J., Rossell J. M., “Passive-damping design for vibration control of large structures”, 2013 10th IEEE International Conference on Control and Automation (ICCA) (12–14 June 2013, Hangzhou, China), IEEE, New York, 2013, 33–38 | DOI | MR

[16] Zhang X., Sun D., Song Y., Yan B., “Dynamics characteristic study of the visco-elastic suspension system of construction vehicles”, International Technology and Innovation Conference 2009 (ITIC 2009) (12–14 October 2009, Xi’an, China), IET, Stevenage, 2010, 1–4 | DOI

[17] Sahu S. K., Datta P. K., “Dynamic stability of laminated composite curved panels with cutouts”, J. Eng. Mech, 129:11 (2003), 1245–1253

[18] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970, 280 pp. | MR

[19] Koltunov M. A., Polzuchest i relaksatsiya, Vysshaya shkola, M., 1976, 278 pp.

[20] Cabańska-Placzkiewicz K., “Vibrations of a complex system with damping under dynamic loading”, Strength of Materials, 34:2 (2002), 165–180 | DOI

[21] Mirsaidov M. M., Safarov I. I., Teshaev M. K., “Dynamics of structurally inhomogeneous lamellar and shell mechanical systems. Part 1”, Journal of Applied Mathematics and Physics, 7:10 (2019), 2283–2302 | DOI

[22] Mirsaidov M., Safarov I. I., Teshaev M. K., “Dynamics of structural-inhomogeneous laminate and shell mechanical systems with point constraints and focused masses. Part 2. Statement of the problem of forced oscillations, methods of solution, computational algorithm and numerical results”, Journal of Applied Mathematics and Physics, 7:11 (2019), 2671–2684 | DOI

[23] Mirsaidov M., Safarov I., Teshaev M., “Dynamic instability of vibrations of thin-wall composite curvorine viscoelastic tubes under the influence of pulse pressure”, E3S Web Conf, 164 (2020), 14013 | DOI

[24] Teshaev M. K., Safarov I. I., Kuldashov N. U., Ishmamatov M. R., Ruziev T. R., “On the distribution of free waves on the surface of a viscoelastic cylindrical cavity”, Journal of Vibration Engineering Technologies, 8:4 (2020), 579–585 | DOI

[25] Korenev B. G., Reznikov L. M., Dinamicheskie gasiteli kolebanii: Teoriya i tekhnicheskie prilozheniya, Nauka, M., 1988, 304 pp.