Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_1_a3, author = {A. A. Koronovskii and M. K. Kurovskaya and O. I. Moskalenko}, title = {On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {32--44}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/} }
TY - JOUR AU - A. A. Koronovskii AU - M. K. Kurovskaya AU - O. I. Moskalenko TI - On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 32 EP - 44 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/ LA - ru ID - IVP_2023_31_1_a3 ER -
%0 Journal Article %A A. A. Koronovskii %A M. K. Kurovskaya %A O. I. Moskalenko %T On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 32-44 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/ %G ru %F IVP_2023_31_1_a3
A. A. Koronovskii; M. K. Kurovskaya; O. I. Moskalenko. On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/
[1] Boccaletti S., Latora V., Moreno V., Chavez M., Hwang D.-U., “Complex networks: Structure and dynamics”, Physics Reports, 424:4–5 (2006), 175–308 | DOI | MR
[2] Arenas A., Díaz-Guilera A., Kurths J., Moreno Y., Zhou C., “Synchronization in complex networks”, Physics Reports, 469:3 (2008), 93–153 | DOI | MR
[3] Boccaletti S., Almendral J. A., Guan S., Leyva I., Liu Z., Sendiña-Nadal I., Wang Z., Zou Y., “Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization”, Physics Reports, 660 (2016), 1–94 | DOI | MR
[4] Leyva I., Sevilla-Escoboza R., Buldú J. M., Sendiuňa-Nadal I.,Gómez-Gardeňes J., Arenas A., Moreno Y., Gómez S.,Jaimes-Reátegui R., Boccaletti S., “Explosive first-order transition to synchrony in networked chaotic oscillators”, Phys. Rev.Lett., 108:16 (2012), 168702 | DOI
[5] Leyva I., Navas A., Sendiña-Nadal I., Almendral J. A., Buldú J. M., Zanin M., Papo D., Boccaletti S., “Explosive transitions to synchronization in networks of phase oscillator”, Scientific Reports, 3 (2013), 1281 | DOI
[6] Gómez-Gardeñes J., Gómez S., Arenas A., Moreno Y., “Explosive synchronization transitions in scale-free networks”, Phys.Rev. Lett., 106:12 (2011), 128701 | DOI | MR
[7] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M.
[8] Anischenko V. S., Vadivasova T. E., “Vzaimosvyaz chastotnykh i fazovykh kharakteristik khaosa. {Dva} kriteriya sinkhronizatsii”, Radiotekhnika i elektronika, 49 (2004), 77–83
[9] Pazó D., “Thermodynamic limit of the first-order phase transition in the Kuramoto model”, Phys. Rev. E, 72:4 (2005), 046211 | DOI | MR
[10] Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I., Hramov A., Boccaletti S., “Self-similarity in explosive synchronization of complex networks”, Phys. Rev. E, 96:6 (2017), 062312 | DOI
[11] Peron T. K. D. M., Rodrigues F. A., “Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations”, Phys. Rev. E., 86:5 (2012), 056108 | DOI
[12] Zou Y., Pereira T., Small M., Liu Z., Kurths J., “Basin of attraction determines hysteresis in explosive synchronization”, Phys. Rev. Lett., 112:11 (2014), 114102 | DOI
[13] Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I., “O vozmozhnosti yavleniya vzryvnoi sinkhronizatsii v setyakh malogo mira”, Izvestiya vuzov. PND, 29 (2021), 467–479 | DOI
[14] Zhu L., Tian L., Shi D., “Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators”, Phys.Rev. E, 88:4 (2013), 042921 | DOI
[15] Peron T. K. D. M., Rodrigues F. A., “Explosive synchronization enhanced by time-delayed coupling”, Phys. Rev. E, 86:1 (2012), 016102 | DOI
[16] Leyva I., Sendiña-Nadal I., Almendral J. A., Navas A., Olmi S., Boccaletti S., “Explosive synchronization in weighted complex networks”, Phys. Rev. E, 88:4 (2013), 042808 | DOI | MR
[17] Jiang X., Li M., Zheng Z., Ma Y., Ma L., “Effect of externality in multiplex networks on one-layer synchronization”, Journal of the Korean Physical Society, 66:11 (2015), 1777–1782 | DOI
[18] Su G., Ruan Z., Guan S., Liu Z., “Explosive synchronization on co-evolving networks”, EPL (Europhysics Letters), 103:4 (2013), 48004 | DOI
[19] Hu X., Boccaletti S., Huang W., Zhang X., Liu Z., Guan S., Lai C.-H., “Exact solution for first-order synchronization transition in a generalized Kuramoto model”, Scientific Reports, 4:1 (2014), 7262 | DOI
[20] Kuramoto Y., “Self-entrainment of a population of coupled non-linear oscillators”, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics., 39, ed. Araki H., Berlin, 420–422 | DOI | MR
[21] Acebrón J. A., Bonilla L. L., Pérez-Vicente C. J., Ritort F., Spigler R., “The Kuramoto model: A simple paradigm for synchronization phenomena”, Rev. Mod. Phys., 77:1 (2005), 137–185 | DOI
[22] Watts D. J., Strogatz S. H., “Collective dynamics of ‘small-world’ networks”, Nature, 393:6684 (1998), 440–442 | DOI | MR