On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 1, pp. 32-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this study is to investigate the problem of how typical (or, conversely, unique) is the phenomenon of explosive synchronization in networks of nonlinear oscillators with topologies of links such as "ring" and "small world", and, in turn, how the partial frequencies of the interacting oscillators must correlate with each other for the phenomenon of explosive synchronization in these networks can be possible. Methods. In this paper, we use an analytical description of the synchronous behavior of networks of nonlinear elements with "ring" and "small world" link topologies. To confirm the obtained results the numerical simulation is used. Results. It is shown that in networks of nonlinear oscillators with topologies of links such as "ring" and "small world", the phenomenon of explosive synchronization can be observed for the different distributions of partial frequencies of network oscillators. Conclusion. The paper considers an analytical description of the behavior of network oscillators with "ring" and "small world" topologies of links and shows that the phenomenon of explosive synchronization in such networks is atypical, but not unique.
Keywords: explosive synchronization phenomenon, Kuramoto oscillators, nonlinear element networks, small-world topology, ring topology, partial frequencies.
@article{IVP_2023_31_1_a3,
     author = {A. A. Koronovskii and M. K. Kurovskaya and O. I. Moskalenko},
     title = {On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/}
}
TY  - JOUR
AU  - A. A. Koronovskii
AU  - M. K. Kurovskaya
AU  - O. I. Moskalenko
TI  - On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 32
EP  - 44
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/
LA  - ru
ID  - IVP_2023_31_1_a3
ER  - 
%0 Journal Article
%A A. A. Koronovskii
%A M. K. Kurovskaya
%A O. I. Moskalenko
%T On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 32-44
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/
%G ru
%F IVP_2023_31_1_a3
A. A. Koronovskii; M. K. Kurovskaya; O. I. Moskalenko. On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the "ring" and "small world" types. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a3/

[1] Boccaletti S., Latora V., Moreno V., Chavez M., Hwang D.-U., “Complex networks: Structure and dynamics”, Physics Reports, 424:4–5 (2006), 175–308 | DOI | MR

[2] Arenas A., Díaz-Guilera A., Kurths J., Moreno Y., Zhou C., “Synchronization in complex networks”, Physics Reports, 469:3 (2008), 93–153 | DOI | MR

[3] Boccaletti S., Almendral J. A., Guan S., Leyva I., Liu Z., Sendiña-Nadal I., Wang Z., Zou Y., “Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization”, Physics Reports, 660 (2016), 1–94 | DOI | MR

[4] Leyva I., Sevilla-Escoboza R., Buldú J. M., Sendiuňa-Nadal I.,Gómez-Gardeňes J., Arenas A., Moreno Y., Gómez S.,Jaimes-Reátegui R., Boccaletti S., “Explosive first-order transition to synchrony in networked chaotic oscillators”, Phys. Rev.Lett., 108:16 (2012), 168702 | DOI

[5] Leyva I., Navas A., Sendiña-Nadal I., Almendral J. A., Buldú J. M., Zanin M., Papo D., Boccaletti S., “Explosive transitions to synchronization in networks of phase oscillator”, Scientific Reports, 3 (2013), 1281 | DOI

[6] Gómez-Gardeñes J., Gómez S., Arenas A., Moreno Y., “Explosive synchronization transitions in scale-free networks”, Phys.Rev. Lett., 106:12 (2011), 128701 | DOI | MR

[7] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M.

[8] Anischenko V. S., Vadivasova T. E., “Vzaimosvyaz chastotnykh i fazovykh kharakteristik khaosa. {Dva} kriteriya sinkhronizatsii”, Radiotekhnika i elektronika, 49 (2004), 77–83

[9] Pazó D., “Thermodynamic limit of the first-order phase transition in the Kuramoto model”, Phys. Rev. E, 72:4 (2005), 046211 | DOI | MR

[10] Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I., Hramov A., Boccaletti S., “Self-similarity in explosive synchronization of complex networks”, Phys. Rev. E, 96:6 (2017), 062312 | DOI

[11] Peron T. K. D. M., Rodrigues F. A., “Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations”, Phys. Rev. E., 86:5 (2012), 056108 | DOI

[12] Zou Y., Pereira T., Small M., Liu Z., Kurths J., “Basin of attraction determines hysteresis in explosive synchronization”, Phys. Rev. Lett., 112:11 (2014), 114102 | DOI

[13] Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I., “O vozmozhnosti yavleniya vzryvnoi sinkhronizatsii v setyakh malogo mira”, Izvestiya vuzov. PND, 29 (2021), 467–479 | DOI

[14] Zhu L., Tian L., Shi D., “Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators”, Phys.Rev. E, 88:4 (2013), 042921 | DOI

[15] Peron T. K. D. M., Rodrigues F. A., “Explosive synchronization enhanced by time-delayed coupling”, Phys. Rev. E, 86:1 (2012), 016102 | DOI

[16] Leyva I., Sendiña-Nadal I., Almendral J. A., Navas A., Olmi S., Boccaletti S., “Explosive synchronization in weighted complex networks”, Phys. Rev. E, 88:4 (2013), 042808 | DOI | MR

[17] Jiang X., Li M., Zheng Z., Ma Y., Ma L., “Effect of externality in multiplex networks on one-layer synchronization”, Journal of the Korean Physical Society, 66:11 (2015), 1777–1782 | DOI

[18] Su G., Ruan Z., Guan S., Liu Z., “Explosive synchronization on co-evolving networks”, EPL (Europhysics Letters), 103:4 (2013), 48004 | DOI

[19] Hu X., Boccaletti S., Huang W., Zhang X., Liu Z., Guan S., Lai C.-H., “Exact solution for first-order synchronization transition in a generalized Kuramoto model”, Scientific Reports, 4:1 (2014), 7262 | DOI

[20] Kuramoto Y., “Self-entrainment of a population of coupled non-linear oscillators”, International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics., 39, ed. Araki H., Berlin, 420–422 | DOI | MR

[21] Acebrón J. A., Bonilla L. L., Pérez-Vicente C. J., Ritort F., Spigler R., “The Kuramoto model: A simple paradigm for synchronization phenomena”, Rev. Mod. Phys., 77:1 (2005), 137–185 | DOI

[22] Watts D. J., Strogatz S. H., “Collective dynamics of ‘small-world’ networks”, Nature, 393:6684 (1998), 440–442 | DOI | MR