Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_1_a1, author = {A. A. Polunovskiy}, title = {Effective algorithms for solving functional equations with superposition on the example of the {Feigenbaum} equation}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {8--19}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a1/} }
TY - JOUR AU - A. A. Polunovskiy TI - Effective algorithms for solving functional equations with superposition on the example of the Feigenbaum equation JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 8 EP - 19 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a1/ LA - ru ID - IVP_2023_31_1_a1 ER -
%0 Journal Article %A A. A. Polunovskiy %T Effective algorithms for solving functional equations with superposition on the example of the Feigenbaum equation %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 8-19 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a1/ %G ru %F IVP_2023_31_1_a1
A. A. Polunovskiy. Effective algorithms for solving functional equations with superposition on the example of the Feigenbaum equation. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 1, pp. 8-19. http://geodesic.mathdoc.fr/item/IVP_2023_31_1_a1/
[1] Shuster G., Determinirovannyi khaos, Mir, M | MR
[2] Feigenbaum M., “Universalnost v povedenii nelineinykh sistem”, Uspekhi fizicheskikh nauk, 141 (1983), 343–374 | DOI
[3] Feigcnbaum M. J., “The universal metric properties of nonlinear transformations”, Journal of Statistical Physics, 21:6 (1979), 669–706 | DOI | MR
[4] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, Journal of Statistical Physics, 19:1 (1978), 25–52 | DOI | MR
[5] Briggs K., “How to calculate the Feigenbaum constants on your PC”, Australian Mathematical Society Gazette, 16 (1989), 89–92 | MR
[6] Broadhurst D., Feigenbaum constants to 1018 decimal places, , 22 March 1999 http://www.plouffe.fr/simon/constants/feigenbaum.txt
[7] Briggs K., “A precise calculation of the Feigenbaum constants”, Mathematics of Computation, 57:195 (1991), 435–439 | DOI | MR
[8] Molteni A., An efficient method for the computation of the Feigenbaum constants to high precision, 2016, arXiv: 1602.02357
[9] Kuznetsov C., Dinamicheskii khaos, 2-e izd, Fizmatlit, M., 2006, 356 pp.
[10] Faà di Bruno F., “Sullo sviluppo delle funzioni”, Annali di Scienze Matematiche e Fisiche, 6 (1855), 479–480
[11] Bell E. T., “Partition polynomials”, Annals of Mathematics, 29:1–4 (1927), 38–46 | DOI | MR
[12] Heideman M. T., Johnson D., Burrus C., “Gauss and the history of the fast Fourier transform”, IEEE ASSP Magazine, 1:4 (1984), 14–21 | DOI | MR
[13] Polunovskii A. A., “Vremennye razlozheniya reshenii uravnenii matematicheskoi fiziki”, Differentsialnye uravneniya, 56 (2020), 393–402 | DOI | MR
[14] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967, 296 pp.
[15] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986, 502 pp. | MR