Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_6_a6, author = {E. G. Ekomasov and K. Yu. Samsonov and A. M. Gumerov and R. V. Kudryavtsev}, title = {Nonlinear waves of the {sine-Gordon} equation in the model with three attracting impurities}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {749--765}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/} }
TY - JOUR AU - E. G. Ekomasov AU - K. Yu. Samsonov AU - A. M. Gumerov AU - R. V. Kudryavtsev TI - Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 749 EP - 765 VL - 30 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/ LA - ru ID - IVP_2022_30_6_a6 ER -
%0 Journal Article %A E. G. Ekomasov %A K. Yu. Samsonov %A A. M. Gumerov %A R. V. Kudryavtsev %T Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 749-765 %V 30 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/ %G ru %F IVP_2022_30_6_a6
E. G. Ekomasov; K. Yu. Samsonov; A. M. Gumerov; R. V. Kudryavtsev. Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 749-765. http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/
[1] Ryskin N. M., Trubetskov D. I., Nelineinye volny, Ucheb. posobie dlya vuzov, Nauka, Fizmatlit, M., 2000, 272 pp.
[2] Dauxois T., Peyrard M., Physics of Solitons, Cambridge University Press, New York, 2010, 436 pp. | MR
[3] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp.
[4] Cuevas-Maraver J., Kevrekidis P. G., Williams F., The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Springer, Cham, 2014, 263 pp. | DOI | MR
[5] Braun O. M., Kivshar Yu. S., Model Frenkelya–Kontorovoi: Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008, 536 pp.
[6] Kryuchkov S. V., Kukhar E. I., “Nonlinear electromagnetic waves in semi-Dirac nanostructures with superlattice”, Eur. Phys. J. B, 93:4 (2020), 62 | DOI | MR
[7] Kiselev V. V., Raskovalov A. A., Batalov S. V., “Nonlinear interaction of domain walls and breathers with a spin-wave field”, Chaos, Solitons and Fractals, 127 (2019), 217–225 | DOI | MR
[8] Delev V. A., Nazarov V. N., Skaldin O. A., Batyrshin E. S., Ekomasov E. G., “Slozhnaya dinamika kaskada kink-antikinkovykh vzaimodeistvii v lineinom defekte elektrokonvektivnoi struktury nematika”, Pisma v ZhETF, 110 (2019), 607–613
[9] Kälbermann G., “The sine-Gordon wobble”, Journal of Physics A: Mathematical and General, 37:48 (2004), 11603–11612 | DOI | MR
[10] Ferreira L. A., Piette B., Zakrzewski W. J., “Wobbles and other kink-breather solutions of the sine-Gordon model”, Phys. Rev. E, 77:3 (2008), 036616 | DOI | MR
[11] Saadatmand D., Dmitriev S. V., Borisov D. I., Kevrekidis P. G., “Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect”, Phys. Rev. E, 90:5 (2014), 052902 | DOI | MR
[12] Kivshar Y. S., Pelinovsky D. E., Cretegny T., Peyrard M., “Internal modes of solitary waves”, Phys. Rev. Lett., 80:23 (1998), 5032–5035 | DOI
[13] Jagtap A. D., Vasudeva Murthy A. S., “Higher order scheme for two-dimensional inhomogeneous sine-Gordon equation with impulsive forcing”, Communications in Nonlinear Science and Numerical Simulation, 64 (2018), 178–197 | DOI | MR
[14] Gomide O. M. L., Guardia M., Seara T. M., “Critical velocity in kink-defect interaction models: Rigorous results”, Journal of Differential Equations, 269:4 (2020), 3282–3346 | DOI | MR
[15] Javidan K., “Analytical formulation for soliton-potential dynamics”, Phys. Rev. E, 78:4 (2008), 046607 | DOI
[16] Piette B., Zakrzewski W. J., “Scattering of sine-Gordon kinks on potential wells”, Journal of Physics A: Mathematical and Theoretical, 40:22 (2007), 5995–6010 | DOI | MR
[17] Al-Alawi J. H., Zakrzewski W. J., “Scattering of topological solitons on barriers and holes of deformed Sine–Gordon models”, Journal of Physics A: Mathematical and Theoretical, 41:31 (2008), 315206 | DOI | MR
[18] Baron H. E., Zakrzewski W. J., “Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models”, Journal of High Energy Physics, 2016:6 (2016), 185 | DOI | MR
[19] Gumerov A. M., Ekomasov E. G., Murtazin R. R., Nazarov V. N., “Transformatsiya solitonov uravneniya sinus-Gordona v modelyakh s peremennymi koeffitsientami i zatukhaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:4, 631–640 | DOI | MR
[20] Goodman R. H., Haberman R., “Interaction of sine-Gordon kinks with defects: the two-bounce resonance”, Physica D: Nonlinear Phenomena, 195:3–4 (2004), 303–323 | DOI | MR
[21] Gumerov A. M., Ekomasov E. G., Zakiryanov F. K., Kudryavtsev R. V., “Struktura i svoistva chetyrekhkinkovykh multisolitonov uravneniya sinus-Gordona”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:3 (2014), 481–495 | DOI | MR
[22] González J. A., Bellorín A., Guerrero L. E., “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations”, Phys. Rev. E, 65:6 (2002), 065601 | DOI | MR
[23] González J. A., Bellorín A., García-Ñustes M. A., Guerrero L. E., Jiménez S., Vázquez L., “Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations”, Phys. Lett. A, 381:24 (2017), 1995–1998 | DOI | MR
[24] Belova T. I., Kudryavtsev A. E., “Solitony i ikh vzaimodeistviya v klassicheskoi teorii polya”, UFN, 167 (1997), 377–406 | DOI
[25] Ekomasov E. G., Gumerov A. M., Murtazin R. R., “Interaction of sine-Gordon solitons in the model with attracting impurities”, Math. Models Methods Appl. Sci., 40:17 (2016), 6178–6186 | DOI | MR
[26] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., “O vozmozhnosti nablyudeniya rezonansnogo vzaimodeistviya kinkov uravneniya sinus-Gordona s lokalizovannymi volnami v realnykh fizicheskikh sistemakh”, Pisma v ZhETF, 101 (2015), 935–939
[27] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., “Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping”, J. Comput. Appl. Math, 312 (2017), 198–208 | DOI | MR
[28] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., Dmitriev S. V., Nazarov V. N., “Multisoliton dynamics in the sine-Gordon model with two point impurities”, Braz. J. Phys., 48:6 (2018), 576–584 | DOI
[29] Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., Fakhretdinov M. I., “Excitation of large-amplitude localized nonlinear waves by the interaction of kinks of the sine-Gordon equation with attracting impurity”, Russian Journal of Nonlinear Dynamics, 15:1 (2019), 21–34 | DOI | MR
[30] Geng X., Shen J., Xue B., “A new nonlinear wave equation: Darboux transformation and soliton solutions”, Wave Motion, 79 (2018), 44–56 | DOI | MR
[31] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater, 339 (2013), 133–137 | DOI
[32] Ekomasov E. G. Azamatov Sh. A., Murtazin R. R., “Izuchenie zarozhdeniya i evolyutsii magnitnykh neodnorodnostei tipa solitonov i brizerov v magnetikakh s lokalnymi neodnorodnostyami anizotropii”, Fizika metallov i metallovedenie, 105 (2008), 341–349
[33] Ekomasov E. G., Murtazin R. R., Nazarov V. N., “Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange”, J. Magn. Magn. Mater, 385 (2015), 217–221 | DOI
[34] Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., “One-dimensional dynamics of magnetic inhomogeneities in a three- and five-layer ferromagnetic structure with different values of the magnetic parameters”, Journal of Physics: Conference Series, 1389 (2019), 012004 | DOI
[35] Shamsutdinov M. A., Nazarov V. N., Lomakina I. Yu., Kharisov A. T., Shamsutdinov D. M., Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Nauka, M., 2009, 456 pp.
[36] Magnus K., Kolebaniya: Vvedenie v issledovanie kolebatelnykh sistem, Mir, M., 1982, 304 pp.
[37] Faleichik B. V., Odnoshagovye metody chislennogo resheniya zadachi Koshi, BGU, Minsk, 42 pp.