Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 749-765.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is to use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with impurities (or spatial inhomogeneity of the periodic potential). Methods. Using the analytical method of collective coordinates for the case of the arbitrary number the same point impurities on the same distance each other, differential equation system was got for localized waves amplitudes as the functions on time. We used the finite difference method with explicit scheme for the numerical solution of the modified sine-Gordon equation. We used a discrete Fourier transform to perform a frequency analysis of the oscillations of localized waves calculate numerically. Results. We found of the differential equation system for three harmonic oscillators with the elastic connection for describe related oscillations of nonlinear waves localized on the three same impurity. The solutions obtained from this system of equations for the frequencies of related oscillation well approximate the results of direct numerical modeling of a nonlinear system. Conclusion. In the article shows that the related oscillation of nonlinear waves localized on three identical impurities located at the same distance from each other represent the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. The analysis of the influence of system parameters and initial conditions on the frequency and type of associated oscillations is carried out.
Keywords: sine-Gordon equation, kink, soliton, breather, the method of collective coordinates, impurity.
@article{IVP_2022_30_6_a6,
     author = {E. G. Ekomasov and K. Yu. Samsonov and A. M. Gumerov and R. V. Kudryavtsev},
     title = {Nonlinear waves of the {sine-Gordon} equation in the model with three attracting impurities},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {749--765},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/}
}
TY  - JOUR
AU  - E. G. Ekomasov
AU  - K. Yu. Samsonov
AU  - A. M. Gumerov
AU  - R. V. Kudryavtsev
TI  - Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 749
EP  - 765
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/
LA  - ru
ID  - IVP_2022_30_6_a6
ER  - 
%0 Journal Article
%A E. G. Ekomasov
%A K. Yu. Samsonov
%A A. M. Gumerov
%A R. V. Kudryavtsev
%T Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 749-765
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/
%G ru
%F IVP_2022_30_6_a6
E. G. Ekomasov; K. Yu. Samsonov; A. M. Gumerov; R. V. Kudryavtsev. Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 749-765. http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a6/

[1] Ryskin N. M., Trubetskov D. I., Nelineinye volny, Ucheb. posobie dlya vuzov, Nauka, Fizmatlit, M., 2000, 272 pp.

[2] Dauxois T., Peyrard M., Physics of Solitons, Cambridge University Press, New York, 2010, 436 pp. | MR

[3] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp.

[4] Cuevas-Maraver J., Kevrekidis P. G., Williams F., The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Springer, Cham, 2014, 263 pp. | DOI | MR

[5] Braun O. M., Kivshar Yu. S., Model Frenkelya–Kontorovoi: Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008, 536 pp.

[6] Kryuchkov S. V., Kukhar E. I., “Nonlinear electromagnetic waves in semi-Dirac nanostructures with superlattice”, Eur. Phys. J. B, 93:4 (2020), 62 | DOI | MR

[7] Kiselev V. V., Raskovalov A. A., Batalov S. V., “Nonlinear interaction of domain walls and breathers with a spin-wave field”, Chaos, Solitons and Fractals, 127 (2019), 217–225 | DOI | MR

[8] Delev V. A., Nazarov V. N., Skaldin O. A., Batyrshin E. S., Ekomasov E. G., “Slozhnaya dinamika kaskada kink-antikinkovykh vzaimodeistvii v lineinom defekte elektrokonvektivnoi struktury nematika”, Pisma v ZhETF, 110 (2019), 607–613

[9] Kälbermann G., “The sine-Gordon wobble”, Journal of Physics A: Mathematical and General, 37:48 (2004), 11603–11612 | DOI | MR

[10] Ferreira L. A., Piette B., Zakrzewski W. J., “Wobbles and other kink-breather solutions of the sine-Gordon model”, Phys. Rev. E, 77:3 (2008), 036616 | DOI | MR

[11] Saadatmand D., Dmitriev S. V., Borisov D. I., Kevrekidis P. G., “Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect”, Phys. Rev. E, 90:5 (2014), 052902 | DOI | MR

[12] Kivshar Y. S., Pelinovsky D. E., Cretegny T., Peyrard M., “Internal modes of solitary waves”, Phys. Rev. Lett., 80:23 (1998), 5032–5035 | DOI

[13] Jagtap A. D., Vasudeva Murthy A. S., “Higher order scheme for two-dimensional inhomogeneous sine-Gordon equation with impulsive forcing”, Communications in Nonlinear Science and Numerical Simulation, 64 (2018), 178–197 | DOI | MR

[14] Gomide O. M. L., Guardia M., Seara T. M., “Critical velocity in kink-defect interaction models: Rigorous results”, Journal of Differential Equations, 269:4 (2020), 3282–3346 | DOI | MR

[15] Javidan K., “Analytical formulation for soliton-potential dynamics”, Phys. Rev. E, 78:4 (2008), 046607 | DOI

[16] Piette B., Zakrzewski W. J., “Scattering of sine-Gordon kinks on potential wells”, Journal of Physics A: Mathematical and Theoretical, 40:22 (2007), 5995–6010 | DOI | MR

[17] Al-Alawi J. H., Zakrzewski W. J., “Scattering of topological solitons on barriers and holes of deformed Sine–Gordon models”, Journal of Physics A: Mathematical and Theoretical, 41:31 (2008), 315206 | DOI | MR

[18] Baron H. E., Zakrzewski W. J., “Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models”, Journal of High Energy Physics, 2016:6 (2016), 185 | DOI | MR

[19] Gumerov A. M., Ekomasov E. G., Murtazin R. R., Nazarov V. N., “Transformatsiya solitonov uravneniya sinus-Gordona v modelyakh s peremennymi koeffitsientami i zatukhaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:4, 631–640 | DOI | MR

[20] Goodman R. H., Haberman R., “Interaction of sine-Gordon kinks with defects: the two-bounce resonance”, Physica D: Nonlinear Phenomena, 195:3–4 (2004), 303–323 | DOI | MR

[21] Gumerov A. M., Ekomasov E. G., Zakiryanov F. K., Kudryavtsev R. V., “Struktura i svoistva chetyrekhkinkovykh multisolitonov uravneniya sinus-Gordona”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:3 (2014), 481–495 | DOI | MR

[22] González J. A., Bellorín A., Guerrero L. E., “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations”, Phys. Rev. E, 65:6 (2002), 065601 | DOI | MR

[23] González J. A., Bellorín A., García-Ñustes M. A., Guerrero L. E., Jiménez S., Vázquez L., “Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations”, Phys. Lett. A, 381:24 (2017), 1995–1998 | DOI | MR

[24] Belova T. I., Kudryavtsev A. E., “Solitony i ikh vzaimodeistviya v klassicheskoi teorii polya”, UFN, 167 (1997), 377–406 | DOI

[25] Ekomasov E. G., Gumerov A. M., Murtazin R. R., “Interaction of sine-Gordon solitons in the model with attracting impurities”, Math. Models Methods Appl. Sci., 40:17 (2016), 6178–6186 | DOI | MR

[26] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., “O vozmozhnosti nablyudeniya rezonansnogo vzaimodeistviya kinkov uravneniya sinus-Gordona s lokalizovannymi volnami v realnykh fizicheskikh sistemakh”, Pisma v ZhETF, 101 (2015), 935–939

[27] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., “Resonance dynamics of kinks in the sine-Gordon model with impurity, external force and damping”, J. Comput. Appl. Math, 312 (2017), 198–208 | DOI | MR

[28] Ekomasov E. G., Gumerov A. M., Kudryavtsev R. V., Dmitriev S. V., Nazarov V. N., “Multisoliton dynamics in the sine-Gordon model with two point impurities”, Braz. J. Phys., 48:6 (2018), 576–584 | DOI

[29] Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., Fakhretdinov M. I., “Excitation of large-amplitude localized nonlinear waves by the interaction of kinks of the sine-Gordon equation with attracting impurity”, Russian Journal of Nonlinear Dynamics, 15:1 (2019), 21–34 | DOI | MR

[30] Geng X., Shen J., Xue B., “A new nonlinear wave equation: Darboux transformation and soliton solutions”, Wave Motion, 79 (2018), 44–56 | DOI | MR

[31] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater, 339 (2013), 133–137 | DOI

[32] Ekomasov E. G. Azamatov Sh. A., Murtazin R. R., “Izuchenie zarozhdeniya i evolyutsii magnitnykh neodnorodnostei tipa solitonov i brizerov v magnetikakh s lokalnymi neodnorodnostyami anizotropii”, Fizika metallov i metallovedenie, 105 (2008), 341–349

[33] Ekomasov E. G., Murtazin R. R., Nazarov V. N., “Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange”, J. Magn. Magn. Mater, 385 (2015), 217–221 | DOI

[34] Gumerov A. M., Ekomasov E. G., Kudryavtsev R. V., “One-dimensional dynamics of magnetic inhomogeneities in a three- and five-layer ferromagnetic structure with different values of the magnetic parameters”, Journal of Physics: Conference Series, 1389 (2019), 012004 | DOI

[35] Shamsutdinov M. A., Nazarov V. N., Lomakina I. Yu., Kharisov A. T., Shamsutdinov D. M., Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Nauka, M., 2009, 456 pp.

[36] Magnus K., Kolebaniya: Vvedenie v issledovanie kolebatelnykh sistem, Mir, M., 1982, 304 pp.

[37] Faleichik B. V., Odnoshagovye metody chislennogo resheniya zadachi Koshi, BGU, Minsk, 42 pp.