Criteria for internal fixed points existence of discrete dynamic Lotka-Volterra systems with homogeneous tournaments
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 702-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of the work is to study the dynamics of the asymptotic behavior of trajectories of discrete Lotka-Volterra dynamical systems with homogeneous tournaments operating in an arbitrary $(m - 1)$-dimensional simplex. It is known that a dynamic system is an object or a process for which the concept of a state is uniquely defined as a set of certain quantities at a given time, and a law describing the evolution of initial state over time is given. Mainly in questions of population genetics, biology, ecology, epidemiology and economics, systems of nonlinear differential equations describing the evolution of the process under study often arise. Since the Lotka-Volterra equations often arise in life phenomena, the main purpose of the work is to study the trajectories of discrete dynamical Lotka-Volterra systems using elements of graph theory. Methods. In the paper cards of fixed points are constructed for quadratic Lotka-Volterra mappings, that allow describing the dynamics of the systems under consideration. Results. Using cards of fixed points of a discrete dynamical system, criteria for the existence of fixed points with odd nonzero coordinates are given in a particular case, and these results on the location of fixed points of Lotka-Volterra systems are generalized accordingly in the case of an arbitrary simplex. The main results are theorems 5-9, which allow us to describe the dynamics of these systems arising in a number of genetic, epidemiological and ecological models. Conclusion. The results obtained in the paper give a detailed description of the dynamics of the trajectories of Lotka-Volterra maps with homogeneous tournaments. The map of fixed points highlights a specific area in the simplex that is most important and interesting for studying the dynamics of these maps. The results obtained are applicable in environmental problems, for example, to describe and study the cycle of biogens.
Keywords: quadratic Lotka-Volterra mapping, simplex, graph, tournament, homogeneous tournament, fixed point, fixed point map, cyclic triple, transitive triple and skew-symmetric matrix.
@article{IVP_2022_30_6_a3,
     author = {D. B. Eshmamatova and M. A. Tadjieva and R. N. Ganikhodzhaev},
     title = {Criteria for internal fixed points existence of discrete dynamic {Lotka-Volterra} systems with homogeneous tournaments},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {702--716},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a3/}
}
TY  - JOUR
AU  - D. B. Eshmamatova
AU  - M. A. Tadjieva
AU  - R. N. Ganikhodzhaev
TI  - Criteria for internal fixed points existence of discrete dynamic Lotka-Volterra systems with homogeneous tournaments
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 702
EP  - 716
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a3/
LA  - ru
ID  - IVP_2022_30_6_a3
ER  - 
%0 Journal Article
%A D. B. Eshmamatova
%A M. A. Tadjieva
%A R. N. Ganikhodzhaev
%T Criteria for internal fixed points existence of discrete dynamic Lotka-Volterra systems with homogeneous tournaments
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 702-716
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a3/
%G ru
%F IVP_2022_30_6_a3
D. B. Eshmamatova; M. A. Tadjieva; R. N. Ganikhodzhaev. Criteria for internal fixed points existence of discrete dynamic Lotka-Volterra systems with homogeneous tournaments. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 702-716. http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a3/

[1] Ganikhodzhaev R. N., “Kvadratichnye stokhasticheskie operatory, funktsii Lyapunova i turniry”, Matematicheskii sbornik, 183:8 (1992), 119–140

[2] Shakhidi F. A., “O bistokhasticheskikh operatorakh, opredelennykh v konechnomernom simplekse”, Sib. matem. zhurn, 50:2 (2009), 463–468 | MR

[3] Ganikhodzhaev R. N., Tadzhieva M. A., Eshmamatova D. B., “Dinamicheskie svoistva kvadratichnykh gomeomorfizmov konechnomernogo simpleksa”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 144, 2018, 104–108

[4] Eshmamatova D., Ganikhodzhaev R., “Tournaments of Volterra type transversal operators acting in a simplex $S^{m-1}$”, AIP Conference Proceedings, 2365:1 (2021), 060009 | DOI

[5] Harary F., Graph Theory, Addison-Wesley, Boston, 1969, 274 pp. | MR

[6] Kharari F., Palmer E., Perechislenie grafov, Monografiya, Mir, M., 1977, 324 pp.

[7] Moon J. W., Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968, 112 pp. | MR

[8] Ganikhodzhaev R. N., “Karta nepodvizhnykh tochek i funktsii Lyapunova dlya odnogo klassa diskretnykh dinamicheskikh sistem”, Matematicheskie zametki, 56:5 (1994), 40–49 | MR

[9] Ganikhodzhaev R. N., Eshmamatova D. B., “Kvadratichnye avtomorfizmy simpleksa i asimptoticheskoe povedenie ikh traektorii”, Vladikavkazskii matematicheskii zhurnal, 8 (2006), 12–28 | MR

[10] Puankare A., Izbrannye trudy v trekh tomakh, v. 1, Novye metody nebesnoi mekhaniki, Nauka, M., 1971, 745 pp. | MR

[11] Nebel B., Nauka ob okruzhayuschei srede. Kak ustroen mir, V 2-kh tomakh, Mir, M., 1993