Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_6_a2, author = {L. V. Turukina}, title = {Dynamics of the {Rabinovich-Fabrikant} system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {685--701}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a2/} }
TY - JOUR AU - L. V. Turukina TI - Dynamics of the Rabinovich-Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 685 EP - 701 VL - 30 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a2/ LA - ru ID - IVP_2022_30_6_a2 ER -
%0 Journal Article %A L. V. Turukina %T Dynamics of the Rabinovich-Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 685-701 %V 30 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a2/ %G ru %F IVP_2022_30_6_a2
L. V. Turukina. Dynamics of the Rabinovich-Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 685-701. http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a2/
[1] Rabinovich M. I., Fabrikant A. L., “Stokhasticheskaya avtomodulyatsiya voln v neravnovesnykh sredakh”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 77:2 (1979), 617–629
[2] Danca M.-F., Feckan M., Kuznetsov N., Chen G., “Looking more closely to the Rabinovich–Fabrikant system”, International Journal of Bifurcation and Chaos, 26:2 (2016), 1650038 | DOI | MR
[3] Danca M.-F., “Hidden transient chaotic attractors of Rabinovich–Fabrikant system”, Nonlinear Dynamics, 86:2 (2016), 1263–1270 | DOI | MR
[4] Danca M.-F., Kuznetsov N., Chen G., “Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system”, Nonlinear Dynamics, 88:1 (2017), 791–805 | DOI | MR
[5] Luo X., Small M., Danca M.-F., Chen G., “On a dynamical system with multiple chaotic attractors”, International Journal of Bifurcation and Chaos, 17:9 (2007), 3235–3251 | DOI | MR
[6] Danca M.-F., Chen G., “Bifurcation and chaos in a complex model of dissipative medium”, International Journal of Bifurcation and Chaos, 14:10 (2004), 3409–3447 | DOI | MR
[7] Srivastava M., Agrawal S. K., Vishal K., Das S., “Chaos control of fractional order Rabinovich–Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich–Fabrikant system”, Applied Mathematical Modelling, 38:13 (2014), 3361–3372 | DOI | MR
[8] Kuznetsov A. P., Kuznetsov S. P., Tyuryukina L. V., “Slozhnaya dinamika i khaos v modelnoi sisteme Rabinovicha–Fabrikanta”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Fizika, 19:1 (2019), 4–18 | DOI
[9] Kuznetsov S. P., Tyuryukina L. V., “Obobschennaya sistema Rabinovicha–Fabrikanta: uravneniya i dinamika”, Izvestiya vuzov. PND, 30:1 (2022), 7–29 | DOI
[10] Liu Y., Yang Q., Pang G., “A hyperchaotic system from the Rabinovich system”, Journal of Computational and Applied Mathematics, 234:1 (2010), 101–113 | DOI | MR
[11] Agrawal S. K., Srivastava M., Das S., “Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems”, Nonlinear Dynamics, 69:4 (2012), 2277–2288 | DOI | MR
[12] Hocking L. M., Stewartson K., “On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance”, Proc. R. Soc. Lond. A, 326:1566 (1972), 289–313 | DOI | MR
[13] Andronov A. A., Fabrikant A. L., “Zatukhanie Landau, vetrovye volny i svistok”, Nelineinye volny, ed. Gaponova-Grekhova A. V, Nauka, M., 1979, 68–104
[14] Kuramoto Y., Yamada T., “Turbulent state in chemical reactions”, Progress of Theoretical Physics, 56:2 (1976), 679–681 | DOI | MR