On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 676-684.

Voir la notice de l'article provenant de la source Math-Net.Ru

Aim of this work is to study the possibility of existence of multistability near the boundary of generalized synchronization in systems with complex attractor topology. Unidirectionally coupled Lorentz systems have been chosen as an object of study, and a modified auxiliary system method has been used to detect the presence of the synchronous regime. Result of the work is a proof of the presence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with a complex topology of attractor. For this purpose, the basins of attraction of the synchronous and asynchronous states of interacting Lorenz systems have been obtained for the value of the coupling parameter corresponding to the realization of the intermittent generalized synchronization regime in the system under study, and the dependence of the multistability measure on the value of the coupling parameter has also been calculated. It is shown that in the regime of intermittent generalized synchronization the measure of multistability turns out to be positive, which is an additional confirmation of the presence of multistability in this case.
Keywords: generalized synchronization, multistability, systems with complex topology of attractor, intermittency, auxiliary system approach.
@article{IVP_2022_30_6_a1,
     author = {O. I. Moskalenko and E.V. Evstifeev},
     title = {On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {676--684},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/}
}
TY  - JOUR
AU  - O. I. Moskalenko
AU  - E.V. Evstifeev
TI  - On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 676
EP  - 684
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/
LA  - ru
ID  - IVP_2022_30_6_a1
ER  - 
%0 Journal Article
%A O. I. Moskalenko
%A E.V. Evstifeev
%T On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 676-684
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/
%G ru
%F IVP_2022_30_6_a1
O. I. Moskalenko; E.V. Evstifeev. On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 676-684. http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/

[1] Pisarchik A. N., Feudel U., “Control of multistability”, Physics Reports, 540:4 (2014), 167–218 | DOI | MR

[2] Attneave F., “Multistability in perception”, Sci. Am., 225:6 (1971), 63–71 | DOI

[3] Bezruchko B. P., Seleznev E. P., Smirnov E. V., “Evolyutsiya basseinov prityazheniya attraktorov simmetrichno svyazannykh sistem s udvoeniem perioda”, Pisma v ZhTF, 21:8 (1995), 12–17

[4] Eschenazi E., Solari H. G., Gilmore R., “Basins of attraction in driven dynamical systems”, Phys. Rev. A, 39:5 (1989), 2609–2627 | DOI | MR

[5] Moreno-Bote R., Rinzel J., Rubin N., “Noise-induced alternations in an attractor network model of perceptual bistability”, Journal of Neurophysiology, 98:3 (2007), 1125–1139 | DOI

[6] Feudel U., “Complex dynamics in multistable systems”, International Journal of Bifurcation and Chaos, 18:6 (2008), 1607–1626 | DOI | MR

[7] Pozdnyakov M. V., Savin A. V., “Osobennosti multistabilnykh rezhimov nesimmetrichno svyazannykh logisticheskikh otobrazhenii”, Izvestiya vuzov. PND, 18:5 (2010), 44–53 | DOI

[8] Postnov D. E., Vadivasova T. E., Sosnovtseva O. V., Balanov A. G., Anishchenko V. S., Mosekilde E., “Role of multistability in the transition to chaotic phase synchronization”, Chaos, 9:1 (1999), 227–232 | DOI

[9] Carvalho R., Fernandez B., Vilela Mendes R., “From synchronization to multistability in two coupled quadratic maps”, Phys. Lett. A, 285:5–6 (2001), 327–338 | DOI

[10] Astakhov V., Shabunin A., Uhm W., Kim S., “Multistability formation and synchronization loss in coupled Hénon maps: Two sides of the single bifurcational mechanism”, Phys. Rev. E, 63:5 (2001), 056212 | DOI

[11] Pikovsky A., Popovych O., Maistrenko Y., “Resolving clusters in chaotic ensembles of globally coupled identical oscillators”, Phys. Rev. Lett., 87:4 (2001), 044102 | DOI

[12] Campos-Mejía A., Pisarchik A. N., Arroyo-Almanza D. A., “Noise-induced on–off intermittency in mutually coupled semiconductor lasers”, Chaos, Solitons Fractals, 54 (2013), 96–100 | DOI

[13] Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I., “Generalized synchronization of chaos in directionally coupled chaotic systems”, Phys. Rev. E, 51:2 (1995), 980–994 | DOI

[14] Koronovskii A. A., Moskalenko O. I., Hramov A. E., “Nearest neighbors, phase tubes, and generalized synchronization”, Phys. Rev. E, 84:3 (2011), 037201 | DOI | MR

[15] Moskalenko O. I., Koronovskii A. A., Hramov A. E., Boccaletti S., “Generalized synchronization in mutually coupled oscillators and complex networks”, Phys. Rev. E, 86:3 (2012), 036216 | DOI

[16] Hramov A. E., Koronovskii A. A., “Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators”, Europhys. Lett., 70:2 (2005), 169–175 | DOI | MR

[17] Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Evstifeev E. V., “Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators”, Chaos, 30:8 (2020), 083133 | DOI | MR

[18] Moskalenko O. I., Koronovskii A. A., Khanadeev V. A., “Metod vydeleniya kharakternykh faz povedeniya v sistemakh so slozhnoi topologiei attraktora, nakhodyaschikhsya vblizi granitsy obobschennoi sinkhronizatsii”, Izvestiya vuzov. PND, 28:3 (2020), 274–281 | DOI

[19] Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Khanadeev V. A., Hramov A. E., Pisarchik A. N., “Jump intermittency as a second type of transition to and from generalized synchronization”, Phys. Rev. E, 102:1 (2020), 012205 | DOI | MR

[20] Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V., “On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems”, Chaos, 31:8 (2021), 083106 | DOI

[21] Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V., “Metod opredeleniya kharakteristik peremezhayuscheisya obobschennoi sinkhronizatsii, osnovannyi na vychislenii veroyatnosti nablyudeniya sinkhronnogo rezhima”, Pisma v ZhTF, 48:2 (2022), 3–6 | DOI

[22] Zheng Z., Wang X., Cross M. C., “Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators”, Phys. Rev. E, 65:5 (2002), 056211 | DOI | MR

[23] Abarbanel H. D. I., Rulkov N. F., Sushchik M. M., “Generalized synchronization of chaos: The auxiliary system approach”, Phys. Rev. E, 53:5 (1996), 4528–4535 | DOI