Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_6_a1, author = {O. I. Moskalenko and E.V. Evstifeev}, title = {On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {676--684}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/} }
TY - JOUR AU - O. I. Moskalenko AU - E.V. Evstifeev TI - On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 676 EP - 684 VL - 30 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/ LA - ru ID - IVP_2022_30_6_a1 ER -
%0 Journal Article %A O. I. Moskalenko %A E.V. Evstifeev %T On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 676-684 %V 30 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/ %G ru %F IVP_2022_30_6_a1
O. I. Moskalenko; E.V. Evstifeev. On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 676-684. http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a1/
[1] Pisarchik A. N., Feudel U., “Control of multistability”, Physics Reports, 540:4 (2014), 167–218 | DOI | MR
[2] Attneave F., “Multistability in perception”, Sci. Am., 225:6 (1971), 63–71 | DOI
[3] Bezruchko B. P., Seleznev E. P., Smirnov E. V., “Evolyutsiya basseinov prityazheniya attraktorov simmetrichno svyazannykh sistem s udvoeniem perioda”, Pisma v ZhTF, 21:8 (1995), 12–17
[4] Eschenazi E., Solari H. G., Gilmore R., “Basins of attraction in driven dynamical systems”, Phys. Rev. A, 39:5 (1989), 2609–2627 | DOI | MR
[5] Moreno-Bote R., Rinzel J., Rubin N., “Noise-induced alternations in an attractor network model of perceptual bistability”, Journal of Neurophysiology, 98:3 (2007), 1125–1139 | DOI
[6] Feudel U., “Complex dynamics in multistable systems”, International Journal of Bifurcation and Chaos, 18:6 (2008), 1607–1626 | DOI | MR
[7] Pozdnyakov M. V., Savin A. V., “Osobennosti multistabilnykh rezhimov nesimmetrichno svyazannykh logisticheskikh otobrazhenii”, Izvestiya vuzov. PND, 18:5 (2010), 44–53 | DOI
[8] Postnov D. E., Vadivasova T. E., Sosnovtseva O. V., Balanov A. G., Anishchenko V. S., Mosekilde E., “Role of multistability in the transition to chaotic phase synchronization”, Chaos, 9:1 (1999), 227–232 | DOI
[9] Carvalho R., Fernandez B., Vilela Mendes R., “From synchronization to multistability in two coupled quadratic maps”, Phys. Lett. A, 285:5–6 (2001), 327–338 | DOI
[10] Astakhov V., Shabunin A., Uhm W., Kim S., “Multistability formation and synchronization loss in coupled Hénon maps: Two sides of the single bifurcational mechanism”, Phys. Rev. E, 63:5 (2001), 056212 | DOI
[11] Pikovsky A., Popovych O., Maistrenko Y., “Resolving clusters in chaotic ensembles of globally coupled identical oscillators”, Phys. Rev. Lett., 87:4 (2001), 044102 | DOI
[12] Campos-Mejía A., Pisarchik A. N., Arroyo-Almanza D. A., “Noise-induced on–off intermittency in mutually coupled semiconductor lasers”, Chaos, Solitons Fractals, 54 (2013), 96–100 | DOI
[13] Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I., “Generalized synchronization of chaos in directionally coupled chaotic systems”, Phys. Rev. E, 51:2 (1995), 980–994 | DOI
[14] Koronovskii A. A., Moskalenko O. I., Hramov A. E., “Nearest neighbors, phase tubes, and generalized synchronization”, Phys. Rev. E, 84:3 (2011), 037201 | DOI | MR
[15] Moskalenko O. I., Koronovskii A. A., Hramov A. E., Boccaletti S., “Generalized synchronization in mutually coupled oscillators and complex networks”, Phys. Rev. E, 86:3 (2012), 036216 | DOI
[16] Hramov A. E., Koronovskii A. A., “Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators”, Europhys. Lett., 70:2 (2005), 169–175 | DOI | MR
[17] Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Evstifeev E. V., “Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators”, Chaos, 30:8 (2020), 083133 | DOI | MR
[18] Moskalenko O. I., Koronovskii A. A., Khanadeev V. A., “Metod vydeleniya kharakternykh faz povedeniya v sistemakh so slozhnoi topologiei attraktora, nakhodyaschikhsya vblizi granitsy obobschennoi sinkhronizatsii”, Izvestiya vuzov. PND, 28:3 (2020), 274–281 | DOI
[19] Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Khanadeev V. A., Hramov A. E., Pisarchik A. N., “Jump intermittency as a second type of transition to and from generalized synchronization”, Phys. Rev. E, 102:1 (2020), 012205 | DOI | MR
[20] Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V., “On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems”, Chaos, 31:8 (2021), 083106 | DOI
[21] Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V., “Metod opredeleniya kharakteristik peremezhayuscheisya obobschennoi sinkhronizatsii, osnovannyi na vychislenii veroyatnosti nablyudeniya sinkhronnogo rezhima”, Pisma v ZhTF, 48:2 (2022), 3–6 | DOI
[22] Zheng Z., Wang X., Cross M. C., “Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators”, Phys. Rev. E, 65:5 (2002), 056211 | DOI | MR
[23] Abarbanel H. D. I., Rulkov N. F., Sushchik M. M., “Generalized synchronization of chaos: The auxiliary system approach”, Phys. Rev. E, 53:5 (1996), 4528–4535 | DOI