Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_5_a6, author = {A. A. Nikitin and A. E. Komlev and A. A. Nikitin and A. B. Ustinov}, title = {Tunable spin-wave delay line based on ferrite and vanadium dioxide}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {605--616}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a6/} }
TY - JOUR AU - A. A. Nikitin AU - A. E. Komlev AU - A. A. Nikitin AU - A. B. Ustinov TI - Tunable spin-wave delay line based on ferrite and vanadium dioxide JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 605 EP - 616 VL - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a6/ LA - ru ID - IVP_2022_30_5_a6 ER -
%0 Journal Article %A A. A. Nikitin %A A. E. Komlev %A A. A. Nikitin %A A. B. Ustinov %T Tunable spin-wave delay line based on ferrite and vanadium dioxide %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 605-616 %V 30 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a6/ %G ru %F IVP_2022_30_5_a6
A. A. Nikitin; A. E. Komlev; A. A. Nikitin; A. B. Ustinov. Tunable spin-wave delay line based on ferrite and vanadium dioxide. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 5, pp. 605-616. http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a6/
[1] Shahoei H., Yao J., “Delay lines”, Wiley Encyclopedia of Electrical and Electronics Engineering, Wiley, Hoboken, New Jersey, 2014, 1–15 | DOI
[2] Ishak W. S., “Magnetostatic wave technology: a review”, Proc. IEEE, 76:2 (1988), 171–187 | DOI
[3] d'Allivy Kelly O., Anane A., Bernard R., Ben Youssef J., Hahn C., Molpeceres A. H., Carrétéro C., Jacquet E., Deranlot C., Bortolotti P., Lebourgeois R., Mage J.-C., de Loubens G., Klein O., Cros V., Fert A., “Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system”, Appl. Phys. Lett., 103:8 (2013), 082408 | DOI
[4] Costa J. D., Figeys B., Sun X., Van Hoovels N., Tilmans H. A., Ciubotaru F., Adelmann C., “Compact tunable YIG-based RF resonators”, Appl. Phys. Lett., 118:16 (2021), 162406 | DOI
[5] Lammel M., Scheffler D., Pohl D., Swekis P., Reitzig S., Piontek S., Reichlova H., Schlitz R., Geishendorf K., Siegl L., Rellinghaus B., Eng L. M., Nielsch K., Goennenwein S. T. B., Thomas A., “Atomic layer deposition of yttrium iron garnet thin films”, Phys. Rev. Mater, 6:4 (2022), 044411 | DOI
[6] Adam J. D., “Analog signal processing with microwave magnetics”, Proc. IEEE, 76:2 (1988), 159–170 | DOI
[7] Adam J. D., Daniel M. R., Okeeffe T. W., “Magnetostatic wave devices”, Microw. J., 25 (1982), 95–99
[8] Chang K. W., Owens J. M., Carter R. L., “Linearly dispersive time-delay control of magnetostatic surface wave by variable ground-plane spacing”, Electron. Lett., 19:14 (1983), 546–547 | DOI
[9] Ustinov A. B., Demidov V. E., Kalinikos B. A., “Electronically tunable nondispersive magnetostatic wave delay line”, Electron. Lett., 37:19 (2001), 1161–1162 | DOI
[10] Vysotskii S. L., Kazakov G. T., Kozhevnikov A. V., Nikitov S. A., Romanov A. V., Filimonov Yu. A., “Bezdispersionnaya liniya zaderzhki na magnitostaticheskikh volnakh”, Pisma v ZhTF, 32:15 (2006), 45–50
[11] Kaboš P., Stalmachov V. S., Magnetostatic Waves and Their Application, Springer, Dordrecht, 1994, 303 pp. | DOI
[12] Veselov A. G., Vysotskii S. L., Kazakov G. T., Sukharev A. G., Filimonov Yu. A., “Poverkhnostnye magnitostaticheskie volny v metallizirovannykh plenkakh ZhIG”, Radiotekhnika i elektronika, 39:12 (1994), 2067–2074
[13] Vopson M. M., “Fundamentals of multiferroic materials and their possible applications”, Crit. Rev. Solid State Mater. Sci., 40:4 (2015), 223–250 | DOI
[14] Palneedi H., Annapureddy V., Priya S., Ryu J., “Status and perspectives of multiferroic magnetoelectric composite materials and applications”, Actuators, 5:1 (2016), 9
[15] Ustinov A.B., Drozdovskii A.V., Nikitin A.A., Semenov A.A., Bozhko D.A., Serga A. A., Hillebrands B., Lähderanta E., Kalinikos B. A., “Dynamic electromagnonic crystal based on artificial multiferroic heterostructure”, Commun. Phys., 2:1 (2019), 137 | DOI
[16] Fetisov Y. K., Srinivasan G., “Electrically tunable ferrite-ferroelectric microwave delay lines”, Appl. Phys. Lett., 87:10 (2005), 103502 | DOI
[17] Shi R., Shen N., Wang J., Wang W., Amini A., Wang N., Cheng C., “Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide”, Appl. Phys. Rev., 6:1 (2019), 011312 | DOI
[18] Ruzmetov D., Gopalakrishnan G., Ko C., Narayanamurti V., Ramanathan S., “Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer”, J. Appl. Phys., 107:11 (2010), 114516 | DOI
[19] Zhou Y., Ramanathan S., “Mott memory and neuromorphic devices”, Proc. IEEE, 103:8 (2015), 1289–1310 | DOI
[20] Safi T. S., Zhang P., Fan Y., Guo Z., Han J., Rosenberg E. R., Ross C., Tserkovnyak Y., Liu L., “Variable spin-charge conversion across metal-insulator transition”, Nat. Commun, 11:1 (2020), 476 | DOI
[21] Morin F. J., “Oxides which show a metal-to-insulator transition at the Neel temperature”, Phys. Rev. Lett., 3:1 (1959), 34–36 | DOI
[22] Andreeva N. V., Turalchuk P. A., Chigirev D. A., Vendik I. B., Ryndin E. A., Luchinin V. V., “Electron impact processes in voltage-controlled phase transition in vanadium dioxide thin films”, Chaos, Solitons Fractals, 142 (2021), 110503 | DOI
[23] Cavalleri A., Tóth C., Siders C. W., Squier J. A., Ráksi F., Forget P., Kieffer J. C., “Femtosecond structural dynamics in VO$_2$ during an ultrafast solid-solid phase transition”, Phys. Rev. Lett., 87:23 (2001), 237401 | DOI
[24] Kikuzuki T., Lippmaa M., “Characterizing a strain-driven phase transition in VO$_2$”, Appl. Phys. Lett., 96:13 (2010), 132107 | DOI
[25] Nikitin A. A., Vitko V. V., Nikitin A. A., Ustinov A. B., Karzin V. V., Komlev A. E., Kalinikos B. A., Lähderanta E., “Spin-wave phase shifters utilizing metal–insulator transition”, IEEE Magn. Lett., 9 (2018), 3706905 | DOI
[26] Nikitin A. A., Vitko V. V., Nikitin A. A., Ustinov A. B., Kalinikos B. A., “Microwave tunable devices on the YIG-VO$_2$ structures”, J. Phys. Conf. Ser, 1400:4 (2019), 044001 | DOI
[27] Nikitin A. A., Nikitin A. A., Ustinov A. B., Komlev A. E., Lähderanta E., Kalinikos B. A., “Metal–insulator switching of vanadium dioxide for controlling spin-wave dynamics in magnonic crystals”, J. Appl. Phys., 128:18 (2020), 183902 | DOI
[28] Cueff S., John J., Zhang Z., Parra J., Sun J., Orobtchouk R., Ramanathan S., Sanchis P., “VO$_2$ nanophotonics”, APL Photonics, 5:11 (2020), 110901 | DOI
[29] Watt S., Kostylev M., Ustinov A. B., Kalinikos B. A., “Implementing a magnonic reservoir computer model based on time-delay multiplexing”, Phys. Rev. Appl., 15:6 (2021), 064060 | DOI
[30] Nikitin A. A., Nikitin A. A., Ustinov A. B., Watt S., Kostylev M. P., “Theoretical model for nonlinear spin-wave transient processes in active-ring oscillators with variable gain and its application for magnonic reservoir computing”, J. Appl. Phys., 131:11 (2022), 113903
[31] Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Åkerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Ciubotaru F., Cotofana S., Csaba G., Dobrovolskiy O. V., Dubs C., Elyasi M., Fripp K. G., Fulara H., Golovchanskiy I. A., Gonzalez-Ballestero C., Graczyk P., Grundler D., Gruszecki P., Gubbiotti G., Guslienko K., Haldar A., Hamdioui S., Hertel R., Hillebrands B., Hioki T., Houshang A., Hu C.-M., Huebl H., Huth M., Iacocca E., Jungfleisch M. B., Kakazei G. N., Khitun A., Khymyn R., Kikkawa T., Klaui M., Klein O., Klos J. W., Knauer S., Koraltan S., Kostylev M., Krawczyk M., Krivorotov I. N., Kruglyak V. V., Lachance-Quirion D., Ladak S., Lebrun R., Li Y., Lindner M., Macedo R., Mayr S., Melkov G. A., Mieszczak S., Nakamura Y., Nembach H. T., Nikiti, “Advances in magnetics roadmap on spin-wave computing”, IEEE Trans. Magn, 58:6 (2022), 0800172 | DOI