Experimental methods for the study of spin waves
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 5, pp. 520-533.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this paper is to give an overview of various experimental methods for investigation of spin waves characteristics. Methods. The paper presents a description of a number of experimental techniques, such as the probing method, the phase shift method, the method of measure of equiphase dependences, the method of intersecting wave beams, and the use of Fourier analysis of the complex transfer coefficient of spin waves to determine their spatial spectrum. The conditions for using the listed methods and the characteristics of spin waves that one can measure by means of these methods are discussed in detail. Results. The paper presents a number of fundamental results that have been obtained on the basis of described methods. For example, the probing method was successfully used to visualize the amplitude and phase distribution of spin waves in the ferrite film plane and, in particular, it was used to experimentally confirm the previously predicted appearance of super-directed propagation of surface and backward volume spin wave beams. The phase-shift measurement method made it possible to measure the dispersion dependence of spin waves in ferrite structures such as ferrite-metal and ferrite-dielectric-metal, where measurements cannot be made by the probing method. The method of measuring equiphase dependences of spin waves made it possible, in particular, to measure for the first time with great accuracy the value of an external magnetic field magnetizing an yttrium iron garnet film to saturation in various crystallographic directions. The method of intersecting wave beams has made it possible to clarify the mechanism of parametric instability of surface spin waves. Fourier analysis of the complex transfer coefficient of spin waves allowed to determine the spatial spectrum of these waves; in particular, dispersion dependences of higher modes of the backward volume spin wave were first measured using this method. Conclusion. The methods described in this paper may continue to be successfully used for investigations of spin waves characteristics in various magnon crystals, ferrite structures and meta-structures.
Keywords: spin wave, probing method, phase shift measurement, equiphase dependence, spatial Fourier analysis.
@article{IVP_2022_30_5_a1,
     author = {S. V. Gerus and E. H. Lock},
     title = {Experimental methods for the study of spin waves},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {520--533},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a1/}
}
TY  - JOUR
AU  - S. V. Gerus
AU  - E. H. Lock
TI  - Experimental methods for the study of spin waves
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 520
EP  - 533
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a1/
LA  - ru
ID  - IVP_2022_30_5_a1
ER  - 
%0 Journal Article
%A S. V. Gerus
%A E. H. Lock
%T Experimental methods for the study of spin waves
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 520-533
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a1/
%G ru
%F IVP_2022_30_5_a1
S. V. Gerus; E. H. Lock. Experimental methods for the study of spin waves. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 5, pp. 520-533. http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a1/

[1] Nikitov S. A., Kalyabin D. V., Lisenkov I. V., Slavin A. N., Barabanenkov Yu. N., Osokin S. A., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sharaevskii Yu. P., Filimonov Yu. A., Khivintsev Yu. V., Vysotskii S. L., Sakharov V. K., Pavlov E. S., “Magnonika — novoe napravlenie spintroniki i spin-volnovoi elektroniki”, Uspekhi fizicheskikh nauk, 185:10 (2015), 1099–1128 | DOI

[2] Chumak A. V., Vasyuchka V. I., Serga A. A., Hillebrands B., “Magnon spintronics”, Nature Physics, 11:6 (2015), 453–461 | DOI

[3] Wang X. S., Zhang H. W., Wang X. R., “Topological magnonics: A paradigm for spin-wave manipulation and device design”, Phys. Rev. Appl., 9:2 (2018), 024029

[4] Pirro P., Vasyuchka V. I., Serga A. A., Hillebrands B., “Advances in coherent magnonics”, Nat. Rev. Mater, 6:12 (2021), 1114–1135 | DOI

[5] Barman A., Gubbiotti G., Ladak S., Adeyeye A. O., Krawczyk M., Gräfe J., Adelmann C., Cotofana S., Naeemi A., Vasyuchka V. I., Hillebrands B., Nikitov S. A., Yu H., Grundler D., Sadovnikov A. V., Grachev A. A., Sheshukova S. E., Duquesne J.-Y., Marangolo M., Csaba G., Porod W., Demidov V. E., Urazhdin S., Demokritov S. O., Albisetti E., Petti D., Bertacco R., Schultheiss H., Kruglyak V. V., Poimanov V. D., Sahoo S., Sinha J., Yang H., Münzenberg M., Moriyama T., Mizukami S., Landeros P., Gallardo R. A., Carlotti G., Kim J.-V., Stamps R. L., Camley R.E., Rana B., Otani Y., Yu W., Yu T., Bauer G.E.W., Back C., Uhrig G.S., Dobrovolskiy O.V., Budinska B., Qin H., van Dijken S., Chumak A. V., Khitun A., Nikonov D. E., Young I. A., Zingsem B. W., Winklhofer M., “The 2021 magnonics roadmap”, Journal of Physics: Condensed Matter, 33:41 (2021), 413001 | DOI

[6] Chumak A., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A., Åkerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Ciubotaru F., Cotofana S., Csaba G., Dobrovolskiy O. V., Dubs C., Elyasi M., Fripp K. G., Fulara H., Golovchanskiy I. A., Gonzalez-Ballestero C., Graczyk P., Grundler D., Gruszecki P., Gubbiotti G., Guslienko K., Haldar A., Hamdioui S., Hertel R., Hillebrands B., Hioki T., Houshang A., Hu C.-M., Huebl H., Huth M., Iacocca E., Jungfleisch M. B., Kakazei G. N., Khitun A., Khymyn R., Kikkawa T., Kläui M., Klein O., Kłos J. W., Knauer S., Koraltan S., Kostylev M., Krawczyk M., Krivorotov I. N., Kruglyak V. V., Lachance-Quirion D., Ladak S., Lebrun R., Li Y., Lindner M., Macêdo R., Mayr S., Melkov G. A., Mieszczak S., Nakamura Y., Nembach H. , “Roadmap on spin-wave computing”, IEEE Transactions on Magnetics, 58:6 (2022), 0800172 | DOI

[7] Damon R. W., Eshbach J. R., “Magnetostatic modes of a ferromagnet slab”, J. Phys. Chem. Solids, 19:3–4 (1961), 308–320 | DOI

[8] Danilov V. V., Zavislyak I. V., Balinskii M. G., Spinvolnovaya elektrodinamika, Libid, Kiev, 1991, 211 pp.

[9] Vashkovskii A. V., Stalmakhov V. S., Sharaevskii Yu. P., Magnitostaticheskie volny v elektronike sverkhvysokikh chastot, Izdatelstvo Saratovskogo universiteta, Saratov, 1993, 312 pp.

[10] Gurevich A. G., Melkov G. A., Magnitnye kolebaniya i volny, Nauka, M., 1994, 464 pp.

[11] Kalinikos B. A., “Dipole-exchange spin-wave spectrum of magnetic films”, Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices, ed. Cottam M. G., World Scientific, Singapore, 1994, 89–156

[12] Gulyaev Yu. V., Nikitov S. A., “Breggovskoe otrazhenie PMSV ot periodicheskogo uchastka poverkhnosti ferrita pri naklonnom padenii volny”, Fizika tverdogo tela, 23:12 (1982), 3678–3679

[13] Vashkovskii A. V., Grechushkin K. V., Stalmakhov A. V., “Prostranstvenno-chastotnye zavisimosti potoka energii poverkhnostnoi magnitostaticheskoi volny”, Radiotekhnika i elektronika, 30:12 (1985), 2422–2428

[14] Vashkovskii A. V., Shakhnazaryan D. G., “Otrazhenie poverkhnostnoi magnitostaticheskoi volny ot kraya magnitnoi plenki”, Radiotekhnika i elektronika, 32:4 (1987), 719–723

[15] Vashkovskii A. V., Zubkov V. I., Lokk E. G., Scheglov V. I., “Vliyanie neodnorodnosti postoyannogo magnitnogo polya na traektorii poverkhnostnykh magnitostaticheskikh voln”, Pisma v ZhTF, 15:4 (1989), 1–4

[16] Annenkov A. Yu., Gerus S. V., “Issledovanie raspredeleniya poverkhnostnykh magnitostaticheskikh voln putem skanirovaniya poverkhnosti ferritovoi plastiny”, Radiotekhnika i elektronika, 57:5 (2012), 572–577

[17] Annenkov A. Yu., Vinogradov A. P., Gerus S. V., Ryzhikov I. A., Shishkov S. A., “Issledovanie magnitostaticheskikh voln v fotonnykh kristallakh”, Izvestiya RAN. Seriya fizicheskaya, 71:11 (2007), 1612–1613

[18] Gerus S. V., Magnitostaticheskie volny v prostranstvenno-periodicheskikh i dvumerno-neodnorodnykh magnitnykh polyakh, diss. ... d-ra fiz.-mat. nauk, IRE im. V. A. Kotelnikova RAN, M., 2010, 317 pp.

[19] Annenkov A. Yu., Gerus S. V., Kovalev S. I., “Transformatsiya poverkhnostnykh magnitostaticheskikh voln, kanaliziruemykh stupenchatym polem podmagnichivaniya”, Zhurnal tekhnicheskoi fiziki, 72:6 (2002), 85–89

[20] Lokk E. G., “Uglovaya shirina lucha pri difraktsii na scheli volny s nekollinearnymi gruppovoi i fazovoi skorostyami”, Uspekhi fizicheskikh nauk, 182:12 (2012), 1327–1343 | DOI

[21] Lokk E. G., “Uglovaya shirina volnovogo puchka obratnoi spinovoi volny, vozbuzhdaemoi lineinym preobrazovatelem v ferritovoi plastine”, Radiotekhnika i elektronika, 60:1 (2015), 102–106 | DOI

[22] Annenkov A. Y., Gerus S. V., Lock E. H., “Superdirectional beam of surface spin wave”, Europhysics Letters, 123:4 (2018), 44003 | DOI

[23] Annenkov A. Y., Gerus S. V., Lock E. H., “Superdirected beam of the backward volume spin wave”, EPJ Web of Conferences, 185 (2018), 02006 | DOI

[24] Gerus S. V., Lokk E. G., Annenkov A. Yu., “Vliyanie odnorodnosti magnitnogo polya, namagnichivayuschego ferritovuyu plenku, na tochnost izmereniya kharakteristik spinovykh voln”, Radiotekhnika i elektronika, 66:12 (2021), 1216–1223 | DOI

[25] Lokk E. G., “Dispersiya magnitostaticheskikh voln v kompozitnoi strukture ferrit-reshetka metallicheskikh polosok”, Radiotekhnika i elektronika, 48:12 (2003), 1484–1494

[26] Zubkov V. I., Lokk E. G., Scheglov V. I., “Prokhozhdenie poverkhnostnykh magnitostaticheskikh voln pod metallicheskoi polosoi, raspolozhennoi nad poverkhnostyu ferritovoi plenki”, Radiotekhnika i elektronika, 34:7 (1989), 1381–1384

[27] Vashkovskii A. V., Zubkov V. I., Lebed B. M., Lokk E. G., Scheglov V. I., Yakovlev S. V., “Dispersiya poverkhnostnykh magnitostaticheskikh voln v sloistoi strukture ferrit–vysokotemperaturnyi sverkhprovodnik”, Pisma v ZhTF, 17:9 (1991), 67–70

[28] Vashkovskii A. V., Zubkov V. I., Lokk E. G., “Rasprostranenie magnitostaticheskikh voln v strukture ferrit–VTSP pri nalichii transportnogo toka v sverkhprovodnike”, Fizika tverdogo tela, 39:12 (1997), 2195–2202

[29] Lokk E. G., “Rasprostranenie poverkhnostnykh magnitostaticheskikh voln v kompozitnoi strukture ferrit-reshetka metallicheskikh polosok”, Radiotekhnika i elektronika, 50:1 (2005), 74–81

[30] Vashkovskii A. V., Lokk E. G., “O vzaimosvyazi energeticheskikh i dispersionnykh kharakteristik magnitostaticheskikh voln v ferritovykh strukturakh”, Uspekhi fizicheskikh nauk, 181:3 (2011), 293-304 | DOI

[31] Vashkovskii A. V., Lokk E. G., Scheglov V. I., “Vliyanie navedennoi odnoosnoi anizotropii na domennuyu strukturu i fazovye perekhody plenok zhelezoittrievogo granata”, Fizika tverdogo tela, 41:11 (1999), 2034–2041

[32] Vashkovskii A. V., Lokk E. G., Scheglov V. I., “Rasprostranenie bezobmennykh spinovykh voln v ferritovykh plenkakh s domennoi strukturoi”, Pisma v ZhETF, 63:7 (1996), 544–548

[33] Vashkovskii A. V., Lokk E. G., Scheglov V. I., “Rasprostranenie magnitostaticheskikh voln v nenasyschennykh ferritovykh plenkakh s polosovoi domennoi strukturoi”, ZhETF, 111:3 (1997), 1016–1031

[34] Vashkovskii A. V., Lokk E. G., Scheglov V. I., “Bezobmennye spinovye volny v plenkakh zhelezoittrievogo granata s polosovymi domenami, namagnichennost vnutri kotorykh orientirovana vblizi ploskosti plenki”, Mikroelektronika, 27:5 (1998), 393–395

[35] Vashkovskii A. V., Lokk E. G., Scheglov V. I., “Gisterezis kharakteristik magnitostaticheskikh voln v ferritovykh plenkakh s polosovymi domenami, vektory namagnichennosti kotorykh orientirovany vblizi ploskosti plenki”, ZhETF, 114:10 (1998), 1430–1450

[36] Vashkovskii A. V., Lokk E. G., “Nablyudenie parametricheskoi neustoichivosti poverkhnostnoi magnitostaticheskoi volny”, Pisma v ZhETF, 60:7 (1994), 545–548

[37] Kruglyak V. V., Demokritov S. O., Grundler D., “Magnonics”, Journal of Physics D: Applied Physics, 43:26 (2010), 264001 | DOI

[38] Sadovnikov A. V., Odintsov S. A., Beginin E. N., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A., “Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes”, Phys. Rev. B, 96:14 (2017), 144428