Neurodynamic model for creative cognition of relational networks with even cyclic inhibition
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 331-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain. Modern AI systems using deep neural network training require large amounts of input data, high computational costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it is fundamentally creative. Methods. The study was carried out through computational experiments with neural networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain mode neural network, and the main information network that receives time sequences of environmental signals and contextual inputs. After training, the reading of the population phase codes was performed with a simple linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract images that are distinguished by the most pronounced features of the relevant line of animals. In computational experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how, using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and generalization of knowledge.
Keywords: conceptual learning, imagination, semantic space, generalization.
@article{IVP_2022_30_3_a7,
     author = {V. D. Tsukerman},
     title = {Neurodynamic model for creative cognition of relational networks with even cyclic inhibition},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {331--357},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a7/}
}
TY  - JOUR
AU  - V. D. Tsukerman
TI  - Neurodynamic model for creative cognition of relational networks with even cyclic inhibition
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 331
EP  - 357
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a7/
LA  - ru
ID  - IVP_2022_30_3_a7
ER  - 
%0 Journal Article
%A V. D. Tsukerman
%T Neurodynamic model for creative cognition of relational networks with even cyclic inhibition
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 331-357
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a7/
%G ru
%F IVP_2022_30_3_a7
V. D. Tsukerman. Neurodynamic model for creative cognition of relational networks with even cyclic inhibition. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 331-357. http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a7/

[1] Abraham A., “The promises and perils of the neuroscience of creativity”, Front. Hum. Neurosci., 7 (2013), 246 | DOI

[2] Benedek M., Fink A., “Toward a neurocognitive framework of creative cognition: the role of memory, attention, and cognitive control”, Curr. Opin. Behav. Sci., 27 (2019), 116–122 | DOI

[3] Kenett Y. N., Faust M., “A semantic network cartography of the creative mind”, Trends Cogn. Sci., 23:4 (2019), 271–274 | DOI

[4] Beaty R. E., Chen Q., Christensen A. P., Kenett Y. N., Silvia P. J., Benedek M., Schacter D. L., “Default network contributions to episodic and semantic processing during divergent creative thinking: A representational similarity analysis”, NeuroImage, 209 (2020), 116499 | DOI

[5] Viganó S., Piazza M., “Distance and direction codes underlie navigation of a novel semantic space in the human brain”, J. Neurosci., 40:13 (2020), 2727–2736 | DOI

[6] Theves S., Fernández G., Doeller C. F., “The hippocampus maps concept space, not feature space”, J. Neurosci., 40:38 (2020), 7318–7325 | DOI

[7] Behrens T. E. J., Muller T. H., Whittington J. C. R., Mark S., Baram A. B., Stachenfeld K. L., Kurth-Nelson Z., “What is a cognitive map? Organizing knowledge for flexible behavior”, Neuron, 100:2 (2018), 490–509 | DOI

[8] Bottini R., Doeller C. F., “Knowledge across reference frames: Cognitive maps and image spaces”, Trends Cogn. Sci., 24:8 (2020), 606–619 | DOI

[9] Kay K., Chung J. E., Sosa M., Schor J. S., Karlsson M. P., Larkin M. C., Liu D. F., Frank L. M., “Constant sub-second cycling between representations of possible futures in the hippocampus”, Cell, 180:3 (2020), 552–567 | DOI

[10] Raffaelli Q., Wilcox R., Andrews-Hanna J., “The neuroscience of imaginative thought: An integrative framework”, The Cambridge Handbook of the Imagination, ed. Abraham A., Cambridge University Press, Cambridge, 2020, 332–353 | DOI

[11] Amalric M., Wang L., Pica P., Figueira S., Sigman M., Dehaene S., “The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers”, PLoS Comput. Biol., 13:1 (2017), e1005273 | DOI

[12] Tsukerman V. D., Cheshkov G. N., “Osnovy nelineinoi dinamiki sensornogo vospriyatiya. I. Fazovoe kodirovanie v ostsillyatornykh setyakh”, Neirokompyutery: razrabotka, primenenie, 2002, no. 7–8, 65–72

[13] Tsukerman V. D., “Matematicheskaya model fazovogo kodirovaniya sobytii v mozge”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 97–107 | DOI

[14] Tsukerman V. D., Eremenko Z. S., Karimova O. V., Kulakov S. V., Sazykin A. A., “Kognitivnaya neirodinamika dvukh strategii navigatsionnogo povedeniya organizmov”, Izvestiya vuzov. PND, 19:6 (2011), 96–108 | DOI

[15] O’Keefe J., Dostrovsky J., “The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat”, Brain Res, 34:1 (1971), 171–175 | DOI

[16] Hafting T., Fyhn M., Molden S., Moser M.-B., Moser E. I., “Microstructure of a spatial map in the entorhinal cortex”, Nature, 436:7052 (2005), 801–806 | DOI

[17] Bellmund J. L. S., Gärdenfors P., Moser E. I., Doeller C. F., “Navigating cognition: Spatial codes for human thinking”, Science, 362:6415 (2018), eaat6766 | DOI

[18] Bernardi S., Benna M. K., Rigotti M., Munuera J., Fusi S., Salzman C. D., “The geometry of abstraction in hippocampus and prefrontal cortex”, Cell, 183:4 (2020), 954–967 | DOI

[19] Kim H., “Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison”, Neuropsychologia, 80 (2016), 35–46 | DOI

[20] Marron T. R., Lerner Y., Berant E., Kinreich S., Shapira-Lichter I., Hendler T., Faust M., “Chain free association, creativity, and the default mode network”, Neuropsychologia, 118 (2018), 40–58 | DOI

[21] Doeller C. F., Barry C., Burgess N., “Evidence for grid cells in a human memory network”, Nature, 463:7281 (2010), 657–661 | DOI

[22] Sharp P. E., Blair H. T., Cho J., “The anatomical and computational basis of the rat head-direction cell signal”, Trends Neurosci., 24:5 (2001), 289–294 | DOI

[23] Sargolini F., Fyhn M., Hafting T., McNaughton B. L., Witter M. P., Moser M.-B., Moser E. I., “Conjunctive representation of position, direction, and velocity in entorhinal cortex”, Science, 312:5774 (2006), 758–762 | DOI

[24] Taube J. S., “The head direction signal: Origins and sensory-motor integration”, Annu. Rev. Neurosci., 30 (2007), 181–207 | DOI

[25] Rolls E. T., Stringer S. M., “Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction”, Neural Networks, 18:9 (2005), 1229–1241 | DOI

[26] Rolls E. T, Xiang J.-Z., “Spatial view cells in the primate hippocampus and memory recall”, Rev. Neurosci., 17:1–2 (2006), 175–200 | DOI

[27] Tsukerman V. D., Kharybina Z. S., Kulakov S. V., “Matematicheskaya model prostranstvennogo kodirovaniya v gippokampalnoi formatsii. II. Neirodinamicheskie korrelyaty mentalnykh traektorii i problema prinyatiya reshenii”, Matematicheskaya biologiya i bioinformatika, 9:1 (2014), 216–256 | DOI

[28] Tsukerman V. D., “K tvorcheskomu poznaniyu: kreativnye nachala relyatsionnykh neironnykh setei s chetnym tsiklicheskim tormozheniem”, Trudy VII Vserossiiskoi konferentsii “Nelineinaya dinamika v kognitivnykh issledovaniyakh-2021” (Nizhnii Novgorod, 20–24 sentyabrya 2021), IPF RAN, Nizhnii Novgorod, 2021, 186–189

[29] Wang J., Narain D., Hosseini E. A., Jazayeri M., “Flexible timing by temporal scaling of cortical responses”, Nat. Neurosci., 21:1 (2018), 102–110 | DOI

[30] Egger S. W., Remington E. D., Chang C.-J., Jazayeri M., “Internal models of sensorimotor integration regulate cortical dynamics”, Nat. Neurosci., 22:11 (2019), 1871–1882 | DOI

[31] Raichle M. E., “The brain's default mode network”, Annu. Rev. Neurosci., 38 (2015), 433–447 | DOI

[32] Higgins C., Liu Y., Vidaurre D., Kurth-Nelson Z., Dolan R., Behrens T., Woolrich M., “Replay bursts in humans coincide with activation of the default mode and parietal alpha networks”, Neuron, 109:5 (2021), 882–893 | DOI

[33] Peer M., Brunec I. K., Newcombe N. S., Epstein R. A., “Structuring knowledge with cognitive maps and cognitive graphs”, Trends Cogn. Sci., 25:1 (2021), 37–54 | DOI

[34] Schacter D. L., Addis D. R., Buckner R. L., “Remembering the past to imagine the future: the prospective brain”, Nat. Rev. Neurosci., 8:9 (2007), 657–661 | DOI