Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_3_a5, author = {A. Yu. Petukhov and S. A. Polevaya}, title = {Measuring cognitive potential based on the performance of tasks of various levels of complexity}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {311--321}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a5/} }
TY - JOUR AU - A. Yu. Petukhov AU - S. A. Polevaya TI - Measuring cognitive potential based on the performance of tasks of various levels of complexity JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 311 EP - 321 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a5/ LA - ru ID - IVP_2022_30_3_a5 ER -
%0 Journal Article %A A. Yu. Petukhov %A S. A. Polevaya %T Measuring cognitive potential based on the performance of tasks of various levels of complexity %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 311-321 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a5/ %G ru %F IVP_2022_30_3_a5
A. Yu. Petukhov; S. A. Polevaya. Measuring cognitive potential based on the performance of tasks of various levels of complexity. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 311-321. http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a5/
[1] Aleksandrov Yu. I., “Psikhofiziologicheskie zakonomernosti naucheniya i metody obucheniya”, Psikhologicheskii zhurnal, 33:6 (2012), 5–19
[2] {Kozhevnikov V. V., Polevaya S. A., Shishalov I. S., Bakhchina A. V.} Mobilnyi HR-izmeritel (HR-izmeritel), Svidetelstvo o gosudarstvennoi registratsii programm dlya EVM 2014618634 ot 26.08.2014
[3] Vandekerckhove J., “A cognitive latent variable model for the simultaneous analysis of behavioral and personality data”, Journal of Mathematical Psychology, 60 (2014), 58–71 | DOI
[4] Faugeras O., Inglis J., “Stochastic neural field equations: a rigorous footing”, Journal of Mathematical Biology, 71:2 (2015), 259–300 | DOI
[5] Kooi B. W., “Modelling the dynamics of traits involved in fighting-predators-prey system”, Journal of Mathematical Biology, 71:6–7 (2015), 1575–1605 | DOI
[6] Haazebroek P., van Dantzig S., Hommel B., “A computational model of perception and action for cognitive robotics”, Cognitive Processing, 12:4 (2011), 355 | DOI
[7] Geukes S., Gaskell M. G., Zwitserlood P., “Stroop effects from newly learned color words: effects of memory consolidation and episodic context”, Frontiers in Psychology, 6 (2015), 278 | DOI
[8] Polevaya S. A., Eremin E. V., Bulanov N. A., Bakhchina A. V., Kovalchuk A. V., Parin S. B., “Sobytiino-svyazannaya telemetriya ritma serdtsa dlya personifitsirovannogo distantsionnogo monitoringa kognitivnykh funktsii i stressa v usloviyakh estestvennoi deyatelnosti”, Sovremennye tekhnologii v meditsine, 11:1 (2019), 109–115 | DOI
[9] Almeria M., Cejudo J. C., Sotoca J., Deus J., Krupinski J., “Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment”, Brain, Behavior, Immunity — Health, 9 (2020), 100163 | DOI
[10] Anokhin K. V., “Gennye zondy dlya kartirovaniya nervnykh setei pri obuchenii”, Printsipy i mekhanizmy deyatelnosti mozga cheloveka, Nauka, L., 1989, 191–192
[11] Petukhov A. Y., Polevaya S. A., Yakhno V. G., “The theory of information images: Modeling based on diffusion equations”, International Journal of Biomathematics, 9:6 (2016), 1650087 | DOI
[12] Petukhov A. Y., Polevaya S. A., “Modeling of communicative individual interactions through the theory of information images”, Current Psychology, 36:3 (2017), 428–433 | DOI
[13] Petukhov A. Y., Polevaya S. A., “Modeling of cognitive brain activity through the information images theory in terms of the bilingual Stroop test”, International Journal of Biomathematics, 10:7 (2017), 1750092 | DOI
[14] Petukhov A. Y., Polevaya S. A., Polevaya A. V., “Experimental diagnostics of the emotional state of individuals using external stimuli and a model of neurocognitive brain activity”, Diagnostics, 12:1 (2022), 125 | DOI
[15] Friston K. J., Price C. J., “Dynamic representations and generative models of brain function”, Brain Research Bulletin, 54:3 (2001), 275–285 | DOI
[16] Güçlü U., van Gerven M. A. J., “Modeling the dynamics of human brain activity with recurrent neural networks”, Frontiers in Computational Neuroscience, 11 (2017), 7 | DOI
[17] Herweg N. A., Kahana M. J., “Spatial representations in the human brain”, Frontiers in Human Neuroscience, 12 (2018), 297 | DOI