Compartmental spiking neuron model CSNM
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 299-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to develop a compartment spiking neuron model as an element of growing neural networks. Methods. As part of the work, the CSNM is compared with the Leaky Integrate-and-Fire model by comparing the reactions of point models to a single spike. The influence of hyperparameters of the proposed model on neuron excitation is also investigated. All the described experiments were carried out in the Simulink environment using the tools of the proposed library. Results. It was concluded that the proposed model is able to qualitatively reproduce the reaction of the point classical model, and the tuning of hyperparameters allows reproducing the following patterns of signal propagation in a biological neuron: a decrease in the maximum potential and an increase in the delay between input and output spikes with an increase in the size of the neuron or the length of the dendrite, as well as an increase in the potential with an increase in the number of active synapses. Conclusion. The proposed compartment spiking neuron model allows to describe the behavior of biological neurons at the level of pulse signal conversion. The hyperparameters of the model allow tuning the neuron responses at fixed other neuron parameters. The model can be used as a part of spiking neural networks with details at the level of compartments of neurons dendritic trees.
Keywords: neuromorphic systems, spiking neural network, spiking neuron, compartment neuron model.
@article{IVP_2022_30_3_a4,
     author = {A. V. Bakhshiev and A. A. Demcheva},
     title = {Compartmental spiking neuron model {CSNM}},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {299--310},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a4/}
}
TY  - JOUR
AU  - A. V. Bakhshiev
AU  - A. A. Demcheva
TI  - Compartmental spiking neuron model CSNM
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 299
EP  - 310
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a4/
LA  - ru
ID  - IVP_2022_30_3_a4
ER  - 
%0 Journal Article
%A A. V. Bakhshiev
%A A. A. Demcheva
%T Compartmental spiking neuron model CSNM
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 299-310
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a4/
%G ru
%F IVP_2022_30_3_a4
A. V. Bakhshiev; A. A. Demcheva. Compartmental spiking neuron model CSNM. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 299-310. http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a4/

[1] Shrestha A., Mahmood A., “Review of deep learning algorithms and architectures”, IEEE Access, 7 (2019), 53040–53065 | DOI

[2] James C. D., Aimone J. B., Miner N. E., Vineyard C. M., Rothganger F. H., Carlson K. D., Mulder S. A., Draelos T. J., Faust A., Marinella M. J., Naegle J. H., Plimpton S. J., “A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications”, Biologically Inspired Cognitive Architectures, 19 (2017), 49–64 | DOI

[3] Tavanaei A., Ghodrati M., Kheradpisheh S. R., Masquelier T., Maida A., “Deep learning in spiking neural networks”, Neural Networks, 111 (2019), 47–63 | DOI

[4] Marcus G., Deep Learning: A Critical Appraisal, 2018 , 27 pp., arXiv: 1801.00631 https://arxiv.org/abs/1801.00631

[5] Gerstner W., “Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking”, Neural Computation, 12:1 (2000), 43–89 | DOI

[6] Gerstner W., Kistler W. M., Spiking Neuron Models: Single Neurons, Populations, Plasticity, Cambridge University Press, Cambridge, 2002, 480 pp. | DOI

[7] Izhikevich E. M., “Simple model of spiking neurons”, IEEE Transactions on Neural Networks, 14:6 (2003), 1569–1572 | DOI

[8] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, Bulletin of Mathematical Biology, 52:1–2 (1990), 25–71 | DOI

[9] Bell J., “Cable theory”, Encyclopedia of Neuroscience., eds. Binder M. D., Hirokawa N., Windhorst U., Springer, Berlin, Heidelberg, 2009 | DOI

[10] Lindsay A. E., Lindsay K. A., Rosenberg J. R., “Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization”, Journal of Computational Neuroscience, 19:1 (2005), 21–38 | DOI

[11] Bakhshiev A. V., Romanov S. P., “Vosproizvedenie reaktsii estestvennykh neironov kak rezultat modelirovaniya strukturno-funktsionalnykh svoistv membrany i organizatsii sinapticheskogo apparata”, Neirokompyutery: razrabotka, primenenie, 2012, no. 7, 25–35

[12] Bakhshiev A., Gundelakh F., “Mathematical model of the impulses transformation processes in natural neurons for biologically inspired control systems development”, Supplementary Proceedings of the 4th International Conference on Analysis of Images, Social Networks and Texts (AIST-SUP 2015) (Yekaterinburg, Russia, April 9–11, 2015), v. 1452, CEUR-WS, Aachen, Germany, 2015, 1–12

[13] Bakhshiev A. V., “Perspektivy primeneniya modelei biologicheskikh neironnykh struktur v sistemakh upravleniya dvizheniem”, Informatsionno-izmeritelnye i upravlyayuschie sistemy, 2011, no. 9, 85–90

[14] Ekkls Dzh., Fiziologiya sinapsov, Mir, M., 1966, 396 pp.

[15] Neuro Matlab: the spiking neuron models in Matlab Simulink https://github.com/aicommunity/NeuroMatlab

[16] Bakhshiev A. V, Korsakov A. M, Astapova L. A, Stankevich L. A., “The structural adaptation of the compartment spiking neuron model”, Proceedings of the VII All-Russian Conference “Nonlinear Dynamics in Cognitive Research — 2021” (Nizhny Novgorod, 20–24 September 2021), Institute of Applied Physics RAS, Nizhny Novgorod, 2021, 30–33