Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 276-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to construct a fitness function that depends on the set of coexisting competing hereditary elements based on population dynamics in the "predator-prey" model with the logistic growth of prey. Materials and methods. The work uses the generalized Volterra model. The planktivorous fish plays the role of a predator. Many different species of zooplankton are considered as prey, which differ from each other in the hereditary strategies of daily vertical migrations. The model takes into account the intraspecific competition of prey. The peculiarity of the model consists of the presence of pairs of hereditary strategies in which the carriers of the first can displace the carriers of the second and vice versa - the carriers of the second can displace the carriers of the first, depending on the set of competing strategies in which they coexist. To restore the fitness function, the ranking method is used, which is reduced to the classification of ordered pairs of hereditary strategies into two classes "the first strategy displaces the second" and "the second displaces the first". Results. The article presents a new methodology for constructing the fitness function. The technique involves two stages. First, the fitness function is reconstructed for a certain finite subset of elements on the basis of processing data on the long-term dynamics and comparing their competitive advantages. At the second stage, the form of the fitness function is derived for an arbitrary set of elements. It uses the features of interspecies interaction reflected in the model. With the help of the constructed fitness function, an evolutionarily stable regime of daily vertical migrations of zooplankton is modeled by numerically solving the minimax problem. Conclusion. The proposed method for constructing a fitness function that depends on a set of competing strategies is quite general and can be applied to a wide range of models of population dynamics. The strategy of diel vertical migrations of zooplankton constructed as a result of modeling is in good agreement with empirical data.
Keywords: fitness function, order, ranking, predator- prey model, zooplankton, daily vertical migrations, survival strategy, optimization.
@article{IVP_2022_30_3_a3,
     author = {O. A. Kuzenkov},
     title = {Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {276--298},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a3/}
}
TY  - JOUR
AU  - O. A. Kuzenkov
TI  - Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 276
EP  - 298
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a3/
LA  - ru
ID  - IVP_2022_30_3_a3
ER  - 
%0 Journal Article
%A O. A. Kuzenkov
%T Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 276-298
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a3/
%G ru
%F IVP_2022_30_3_a3
O. A. Kuzenkov. Construction of the fitness function depending on a set of competing strategies based on the analysis of population dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 276-298. http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a3/

[1] Stucchi L., Pastor J. M., García-Algarra J., Galeano J., “A general model of population dynamics accounting for multiple kinds of interaction”, Complexity, 2020 (2020), 7961327 | DOI

[2] Victorov A. A., Kholodnov V. A., “The mathematical model of population dynamics”, Journal of Nanomedicine Nanotechnology, 5:1 (2019), 009

[3] Frisman E. Y., Zhdanova O. L., Kulakov M. P., Neverova G. P., Revutskaya O. L., “Mathematical modeling of population dynamics based on recurrent equations: Results and prospects. Part I”, Biology Bulletin, 48:1 (2021), 1–15 | DOI

[4] McBride J. M., Nimphius S., “Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: influence of strength and eccentric loading”, Scientific Reports, 10:1 (2020), 12052 | DOI

[5] Abiodun O. I., Jantan A., Omolara A. E., Dada K. V., Mohamed N. A. E., Arshad H., “State-of-the-art in artificial neural network applications: A survey”, Heliyon, 4:11 (2018), e00938 | DOI

[6] Gorban A. N., Zinovyev A., “Principal manifolds and graphs in practice: from molecular biology to dynamical systems”, International Journal of Neural Systems, 20:3 (2010), 219–232 | DOI

[7] Aynaud M.-M., Mirabeau O., Gruel N., Grossetête S., Boeva V., Durand S., Surdez D., Saulnier O., Zaïdi S., Gribkova S., Fouché A., Kairov U., Raynal V., Tirode F., Grünewald T. G. P., Bohec M., Baulande S., Janoueix-Lerosey I., Vert J.-P., Barillot E., Delattre O., Zinovyev A., “Transcriptional programs define intratumoral heterogeneity of ewing sarcoma at single-cell resolution”, Cell Reports, 30:6 (2020), 1767–1779 | DOI

[8] Demidova A., Druzhinina O., Jaćimović M., Masina O., Mijajlovic N., “Problems of synthesis, analysis and optimization of parameters for multidimensional mathematical models of interconnected populations dynamics”, Optimization and Applications, OPTIMA 2019, Communications in Computer and Information Science, 1145, eds. Jaćimović M., Khachay M., Malkova V., Posypkin M., Springer, Cham, 2020, 56–71 | DOI

[9] Korobeinikov A., Shchepakina E., Sobolev V., “A black swan and canard cascades in an SIR infectious disease model”, Mathematical Biosciences and Engineering, 17:1 (2019), 725–736 | DOI

[10] Gavrilets S., Fitness Landscapes and the Origin of Species (MPB-41), Princeton University Press, Princeton, 2004, 480 pp.

[11] Gyllenberg M., Metz J. A. J. H., Service R., “When do optimisation arguments make evolutionary sense?”, The Mathematics of Darwin’s Legacy. Mathematics and Biosciences in Interaction, eds. Chalub F., Rodrigues J., Springer, Basel, 2011, 233–268 | DOI

[12] Parvinen K., Dieckmann U., Heino M., “Function-valued adaptive dynamics and the calculus of variations”, Journal of Mathematical Biology, 52:1 (2006), 1–26 | DOI

[13] Birch J., “Natural selection and the maximization of fitness”, Biological Reviews, 91:3 (2016), 712–727 | DOI

[14] Kuzenkov O., Morozov A., Kuzenkova G., “Recognition of patterns of optimal diel vertical migration of zooplankton using neural networks”, 2019 International Joint Conference on Neural Networks (IJCNN) (14–19 July 2019, Budapest, Hungary), IEEE, New York, 2019 | DOI

[15] Clark C., Mangel M., Dynamic State Variable Models in Ecology: Methods and Applications, Oxford University Press, Oxford, 2000, 289 pp.

[16] Fiksen O., Giske J., “Vertical distribution and population dynamics of copepods by dynamic optimization”, ICES Journal of Marine Science, 52:3–4 (1995), 483–503 | DOI

[17] Klimenko A. Y., “Entropy and equilibria in competitive systems”, Entropy, 16:1 (2014), 1–22 | DOI

[18] Bratus A. S., Semenov Y. S., Novozhilov A. S., “Adaptive fitness landscape for replicator systems: to maximize or not to maximize”, Mathematical Modelling of Natural Phenomena, 13:3 (2018), 25–38 | DOI

[19] Drozhzhin S. V., Bratus A. S., “Matematicheskaya model evolyutsii replikatornykh sistem”, Vestnik Moskovskogo universiteta. Ser. Vychislitelnaya matematika i kibernetika, 2018, no. 3, 36–41

[20] Gorban A. N., Obkhod ravnovesiya, Nauka, M., 1984, 226 pp.

[21] Gorban A. N., “Selection theorem for systems with inheritance”, Mathematical Modelling of Natural Phenomena, 2:4 (2007), 1–45 | DOI

[22] Gorban A. N., “Self-simplification in Darwin’s systems”, Coping with Complexity: Model Reduction and Data Analysis, Lecture Notes in Computational Science and Engineering, 75, eds. Gorban A., Roose D., Springer, Berlin, Heidelberg, 2011, 311–344 | DOI

[23] Karev G. P., Kareva I. G., “Replicator equations and models of biological populations and communities”, Mathematical Modelling of Natural Phenomena, 9:3 (2014), 68–95 | DOI

[24] Kuzenkov O., Ryabova E., “Variational principle for self-replicating systems”, Mathematical Modelling of Natural Phenomena, 10:2 (2015), 115–128 | DOI

[25] Kuzenkov O. A., Ryabova E. A., “Limit possibilities of solution of a hereditary control system”, Differential Equations, 51:4 (2015), 523–532 | DOI

[26] Kuzenkov O., Morozov A., “Towards the construction of a mathematically rigorous framework for the modelling of evolutionary fitness”, Bulletin of Mathematical Biology, 81:11 (2019), 4675–4700 | DOI

[27] Mohri M., Rostamizadeh A., Talwalkar A., Foundations of Machine Learning, The MIT Press, Cambridge, 2012, 432 pp.

[28] Liu T.-Y., “Learning to rank for information retrieval”, Foundations and Trends in Information Retrieval, 3:3 (2009), 225–331 | DOI

[29] Tax N., Bockting S., Hiemstra D., “A cross-benchmark comparison of 87 learning to rank methods”, Information Processing Management, 51:6 (2015), 757–772 | DOI

[30] Rahangdale A., Raut S., “Machine learning methods for ranking”, International Journal of Software Engineering and Knowledge Engineering, 29:6 (2019), 729–761 | DOI

[31] Ibrahim O. A. S., Landa-Silva D., “An evolutionary strategy with machine learning for learning to rank in information retrieval”, Soft Computing, 22:10 (2018), 3171–3185 | DOI

[32] Oliveira I. F. D., Ailon N., Davidov O., “A new and flexible approach to the analysis of paired comparison data”, Journal of Machine Learning Research, 19:60 (2018), 1–29

[33] Ailon N., “An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity”, Journal of Machine Learning Research, 13:5 (2012), 137–164

[34] Kuzenkov O., Morozov A., Kuzenkova G., “Exploring evolutionary fitness in biological systems using machine learning methods”, Entropy, 23:1 (2021), 35 | DOI

[35] Sandhu S. K., Morozov A., Kuzenkov O., “Revealing evolutionarily optimal strategies in self-reproducing systems via a new computational approach”, Bulletin of Mathematical Biology, 81:11 (2019), 4701–4725 | DOI

[36] Klimenko A. Y., “Intransitivity in theory and in the real world”, Entropy, 17:6 (2015), 4364–4412 | DOI

[37] Ringelberg J., Diel Vertical Migration of Zooplankton in Lakes and Oceans, Springer, Dordrecht, 2010, 356 pp. | DOI

[38] Ostrovskii A. G., Arashkevich E. G., Solovyev V. A., Shvoev D. A., “Seasonal variation of the sound-scattering zooplankton vertical distribution in the oxygen-deficient waters of the NE Black Sea”, Ocean Science, 17:4 (2021), 953–974 | DOI

[39] Sakinan S., Gücü A. C., “Spatial distribution of the Black Sea copepod, Calanus euxinus, estimated using multi-frequency acoustic backscatter”, ICES Journal of Marine Science, 74:3 (2017), 832–846 | DOI

[40] Hays G. C., “A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations”, Hydrobiologia, 503:1–3 (2003), 163–170 | DOI

[41] Kaiser M. J., Attrill M. J., Jennings S., Thomas D., Barnes D. K. A., Brierley A. S., Polunin N. V. C., Raffaelli D. G., Williams P. J. I. B., Marine Ecology: Processes, Systems, and Impacts, Oxford University Press, Oxford, 2005, 557 pp.

[42] Buesseler K. O., Lamborg C. H., Boyd P. W., Lam P. J., Trull T. W., Bidigare R. R., Bishop J. K. B., Casciotti K. L., Dehairs F., Elskens M., Honda M., Karl D. M., Siegel D. A., Silver M. W., Steinberg D. K., Valdes J., Mooy B. V., Wilson S., “Revisiting carbon flux through the ocean's twilight zone”, Science, 316:5824 (2007), 567–570 | DOI

[43] Ducklow H. W., Steinberg D. K., Buesseler K. O., “Upper ocean carbon export and the biological pump”, Oceanography, 14:4 (2001), 50–58 | DOI

[44] Isla A., Scharek R., Latasa M., “Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean”, Journal of Marine Systems, 143 (2015), 86–97 | DOI

[45] Archibald K. M., Siegel D. A., Doney S. C., “Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump”, Global Biogeochemical Cycles, 33:2 (2019), 181–199 | DOI

[46] Arcifa M. S., Perticarrari A., Bunioto T. C., Domingos A. R., Minto W. J., “Microcrustaceans and predators: diel migration in a tropical lake and comparison with shallow warm lakes”, Limnetica, 35:2 (2016), 281–296 | DOI

[47] Häfker N. S., Meyer B., Last K. S., Pond D. W., Hüppe L., Teschke M., “Circadian clock involvement in zooplankton diel vertical migration”, Current Biology, 27:14 (2017), 2194–2201 | DOI

[48] Guerra D., Schroeder K., Borghini M., Camatti E., Pansera M., Schroeder A., Sparnocchia S., Chiggiato J., “Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler”, Ocean Science, 15:3 (2019), 631–649 | DOI

[49] Wishner K. F., Seibel B., Outram D., “Ocean deoxygenation and copepods: coping with oxygen minimum zone variability”, Biogeosciences, 17:8 (2020), 2315–2339 | DOI

[50] Tutasi P., Escribano R., “Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile”, Biogeosciences, 17:2 (2020), 455–473 | DOI

[51] Baumgartner M. F., Tarrant A. M., “The physiology and ecology of diapause in marine copepods”, Annual Review of Marine Science, 9 (2017), 387–411 | DOI

[52] Tikhonov D. A., Medvinskii A. B., “Analiz vzaimnykh korrelyatsii mezhdu kolebaniyami obiliya populyatsii planktona i korrelyatsii mezhdu kolebaniyami planktonnogo obiliya i variatsiyami temperatury na primere ekosistemy Narochanskikh ozer”, Biofizika, 2019, no. 4, 747–753 | DOI

[53] Giricheva E. E., “Vliyanie troficheskikh otnoshenii v soobschestve planktona na ego \linebreak prostranstvenno-vremennuyu dinamiku”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 393–405 | DOI

[54] Sergeeva V. M., Drits A. V., Flint M. V., “Osobennosti raspredeleniya i pitaniya dominiruyuschikh vidov zooplanktona v usloviyakh osennego razvitiya kokkolitoforid v vostochnoi chasti Barentseva morya”, Okeanologiya, 59:5 (2019) | DOI

[55] Morozov A., Kuzenkov O. A., Arashkevich E. G., “Modelling optimal behavioural strategies in structured populations using a novel theoretical framework”, Scientific Reports, 9:1 (2019), 15020 | DOI

[56] Morozov A. Y., Kuzenkov O. A., “Towards developing a general framework for modelling vertical migration in zooplankton”, Journal of Theoretical Biology, 405 (2016), 17–28 | DOI

[57] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, \linebreak Institut kompyuternykh issledovanii, Moskva-Izhevsk, 2003, 368 pp.

[58] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, Regulyarnaya i khaoticheskaya dinamika, Moskva-Izhevsk, 2002, 232 pp.

[59] Bishop K. M., Raspoznavanie obrazov i mashinnoe obuchenie, Vilyams, M., 2020, 960 pp.

[60] Danovaro R., Carugati L., Berzano M., Cahill A. E., Carvalho S., Chenuil A., Corinaldesi C., Cristina S., David R., Dell'Anno A., Dzhembekova N., Garcés E., Gasol J. M.,\hspace{-1pt} Goela P., Fé-\linebreak ral J.-P., Ferrera I., Forster R. M., Kurekin A. A., Rastelli E., Marinova V., Miller P. I., Moncheva S., Newton A., Pearman J. K., Pitois S. G., Reñé A., Rodríguez-Ezpeleta N., Saggiomo V., Simis S. G. H., Stefanova K., Wilson C., Martire M. L., Greco S., Cochrane S. K. J., Mangoni O., Borja A., “Implementing and innovating marine monitoring approaches for assessing marine environmental status”, Frontiers in Marine Science, 3 (2016), 213 | DOI

[61] Sato M., Variability in Diel Vertical Migration of Zooplankton and Physical Properties in Saanich Inlet, British Columbia, University of Victoria, PhD Thesis Victoria, Canada, 2013, 122 pp.

[62] Morozov A. Y., Kuzenkov O. A., Sandhu S. K., “Global optimisation in Hilbert spaces using the survival of the fittest algorithm”, Communications in Nonlinear Science and Numerical Simulation, 103 (2021), 106007 | DOI