Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 268-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of our work is to investigate asymptotic stationary states of an open disordered many-body quantum model which is characterized by an ergodic - many-body localization (MBL) phase transition. To find these states, we use the neural-network ansatz, a new method of modeling complex many-body quantum states discussed in the recent literature. Our main result is that that the ergodic phase - MBL transition is detectable in the performance of the neural network that is trained to reproduce the asymptotic states of the model. While the network is able to reproduce, with a relatively high accuracy, ergodic states, it fails to do so when the model system enter the MBL phase. We conclude that MBL features of the model translate into the cost function landscape which becomes corrugated and acquires many local minima.
Keywords: many-body localization, open quantum systems, neural networks.
@article{IVP_2022_30_3_a2,
     author = {I. I. Jusipov and E. A. Kozinov and T. V. Lapteva},
     title = {Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {268--275},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/}
}
TY  - JOUR
AU  - I. I. Jusipov
AU  - E. A. Kozinov
AU  - T. V. Lapteva
TI  - Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 268
EP  - 275
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/
LA  - en
ID  - IVP_2022_30_3_a2
ER  - 
%0 Journal Article
%A I. I. Jusipov
%A E. A. Kozinov
%A T. V. Lapteva
%T Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 268-275
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/
%G en
%F IVP_2022_30_3_a2
I. I. Jusipov; E. A. Kozinov; T. V. Lapteva. Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 268-275. http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/

[1] Bellman R. E., Dynamic Programming, Princeton University Press, Princeton, 1957, 365 pp.

[2] Meyerov I., Liniov A., Ivanchenko M., Denisov S., “Simulating quantum dynamics: Evolution of algorithms in the HPC context”, Lobachevskii Journal of Mathematics, 41:8 (2020), 1509–1520 | DOI

[3] Eisert J., Cramer M., Plenio M. B., “Colloquium: Area laws for the entanglement entropy”, Rev. Mod. Phys., 82:1 (2010), 277–306 | DOI

[4] Vidal G., “Efficient classical simulation of slightly entangled quantum computations”, Phys. Rev. Lett., 91:14 (2003), 147902 | DOI

[5] Carleo G., Troyer M., “Solving the quantum many-body problem with artificial neural networks”, Science, 355:6325 (2017), 602–606 | DOI

[6] Levine Y., Sharir O., Cohen N., Shashua A., “Quantum entanglement in deep learning architectures”, Phys. Rev. Lett., 122:6 (2019), 065301 | DOI

[7] Goodfellow I., Bengio Y., Courville A., Deep Learning, The MIT Press, Cambridge, Massachusetts, 2016, 800 pp.

[8] Melko R. G., Carleo G., Carrasquilla J., Cirac J. I., “Restricted Boltzmann machines in quantum physics”, Nature Physics, 15:9 (2019), 887–892 | DOI

[9] Deng D.-L., Li X., Das Sarma S., “Quantum entanglement in neural network states”, Phys. Rev. X, 7:2 (2017), 021021 | DOI

[10] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI

[11] Vicentini F., Biella A., Regnault N., Ciuti C., “Variational neural-network ansatz for steady states in open quantum systems”, Phys. Rev. Lett., 122:25 (2019), 250503 | DOI

[12] Hartmann M. J., Carleo G., “Neural-network approach to dissipative quantum many-body dynamics”, Phys. Rev. Lett., 122:25 (2019), 250502 | DOI

[13] Torlai G., Melko R. G., “Latent space purification via neural density operators”, Phys. Rev. Lett., 120:24 (2018), 240503 | DOI

[14] Yoshioka N., Hamazaki R., “Constructing neural stationary states for open quantum many-body systems”, Phys. Rev. B, 99:21 (2019), 214306 | DOI

[15] Vakulchyk I., Yusipov I., Ivanchenko M., Flach S., Denisov S., “Signatures of many-body localization in steady states of open quantum systems”, Phys. Rev. B, 98:2 (2018), 020202 | DOI

[16] Pal A., Huse D. A., “Many-body localization phase transition”, Phys. Rev. B, 82:17 (2010), 174411 | DOI

[17] Becca F., Sorella S., Quantum Monte Carlo Approaches for Correlated Systems, Cambridge University Press, Cambridge, 2017, 274 pp. | DOI

[18] NetKet https://www.netket.org