Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_3_a2, author = {I. I. Jusipov and E. A. Kozinov and T. V. Lapteva}, title = {Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {268--275}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/} }
TY - JOUR AU - I. I. Jusipov AU - E. A. Kozinov AU - T. V. Lapteva TI - Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 268 EP - 275 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/ LA - en ID - IVP_2022_30_3_a2 ER -
%0 Journal Article %A I. I. Jusipov %A E. A. Kozinov %A T. V. Lapteva %T Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 268-275 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/ %G en %F IVP_2022_30_3_a2
I. I. Jusipov; E. A. Kozinov; T. V. Lapteva. Transition from ergodic to many-body localization regimes in open quantum systems in terms of the neural-network ansatz. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 3, pp. 268-275. http://geodesic.mathdoc.fr/item/IVP_2022_30_3_a2/
[1] Bellman R. E., Dynamic Programming, Princeton University Press, Princeton, 1957, 365 pp.
[2] Meyerov I., Liniov A., Ivanchenko M., Denisov S., “Simulating quantum dynamics: Evolution of algorithms in the HPC context”, Lobachevskii Journal of Mathematics, 41:8 (2020), 1509–1520 | DOI
[3] Eisert J., Cramer M., Plenio M. B., “Colloquium: Area laws for the entanglement entropy”, Rev. Mod. Phys., 82:1 (2010), 277–306 | DOI
[4] Vidal G., “Efficient classical simulation of slightly entangled quantum computations”, Phys. Rev. Lett., 91:14 (2003), 147902 | DOI
[5] Carleo G., Troyer M., “Solving the quantum many-body problem with artificial neural networks”, Science, 355:6325 (2017), 602–606 | DOI
[6] Levine Y., Sharir O., Cohen N., Shashua A., “Quantum entanglement in deep learning architectures”, Phys. Rev. Lett., 122:6 (2019), 065301 | DOI
[7] Goodfellow I., Bengio Y., Courville A., Deep Learning, The MIT Press, Cambridge, Massachusetts, 2016, 800 pp.
[8] Melko R. G., Carleo G., Carrasquilla J., Cirac J. I., “Restricted Boltzmann machines in quantum physics”, Nature Physics, 15:9 (2019), 887–892 | DOI
[9] Deng D.-L., Li X., Das Sarma S., “Quantum entanglement in neural network states”, Phys. Rev. X, 7:2 (2017), 021021 | DOI
[10] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI
[11] Vicentini F., Biella A., Regnault N., Ciuti C., “Variational neural-network ansatz for steady states in open quantum systems”, Phys. Rev. Lett., 122:25 (2019), 250503 | DOI
[12] Hartmann M. J., Carleo G., “Neural-network approach to dissipative quantum many-body dynamics”, Phys. Rev. Lett., 122:25 (2019), 250502 | DOI
[13] Torlai G., Melko R. G., “Latent space purification via neural density operators”, Phys. Rev. Lett., 120:24 (2018), 240503 | DOI
[14] Yoshioka N., Hamazaki R., “Constructing neural stationary states for open quantum many-body systems”, Phys. Rev. B, 99:21 (2019), 214306 | DOI
[15] Vakulchyk I., Yusipov I., Ivanchenko M., Flach S., Denisov S., “Signatures of many-body localization in steady states of open quantum systems”, Phys. Rev. B, 98:2 (2018), 020202 | DOI
[16] Pal A., Huse D. A., “Many-body localization phase transition”, Phys. Rev. B, 82:17 (2010), 174411 | DOI
[17] Becca F., Sorella S., Quantum Monte Carlo Approaches for Correlated Systems, Cambridge University Press, Cambridge, 2017, 274 pp. | DOI
[18] NetKet https://www.netket.org