Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_2_a5, author = {M. P. Kulakov and E. Ya. Frisman}, title = {Simple and complex dynamics in the model of evolution of two populations coupled by migration with non-overlapping generations}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {208--232}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a5/} }
TY - JOUR AU - M. P. Kulakov AU - E. Ya. Frisman TI - Simple and complex dynamics in the model of evolution of two populations coupled by migration with non-overlapping generations JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 208 EP - 232 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a5/ LA - ru ID - IVP_2022_30_2_a5 ER -
%0 Journal Article %A M. P. Kulakov %A E. Ya. Frisman %T Simple and complex dynamics in the model of evolution of two populations coupled by migration with non-overlapping generations %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 208-232 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a5/ %G ru %F IVP_2022_30_2_a5
M. P. Kulakov; E. Ya. Frisman. Simple and complex dynamics in the model of evolution of two populations coupled by migration with non-overlapping generations. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 208-232. http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a5/
[1] Haldane J. B. S., “A mathematical theory of natural and artificial selection.Part II. The influence of partial self-fertilisation, inbreeding, assortative mating,and selective fertilisation on the composition of Mendelian populations, and onnatural selection”, Biological Reviews, 1:3 (1924), 158–163 | DOI
[2] Fisher R. A., The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1930, 272 pp. | DOI
[3] Wright S., “Evolution in Mendelian populations”, Genetics, 16:2 (1931), 97–159 | DOI
[4] Frisman E. Ya., Shapiro A. P., Izbrannye matematicheskie modeli divergentnoievolyutsii populyatsii, Nauka, M., 1977, 152 pp.
[5] Svirezhev Yu. M., Pasekov V. P., Osnovy matematicheskoi genetiki, Nauka, M., 1982, 512 pp.
[6] Frisman E. Ya., Pervichnaya geneticheskaya divergentsiya (Teoreticheskii analizi modelirovanie), DVNTs AN SSSR, Vladivostok, 1986, 160 pp.
[7] Bürger R., “A survey of migration-selection models in population genetics”, Discrete Continuous Dynamical Systems - B, 19:4 (2014), 883–959 | DOI
[8] Carroll S. P., Hendry A. P., Reznick D. N., Fox C. W., “Evolution on ecologicaltime-scales”, Functional Ecology, 21:3 (2007), 387–393 | DOI
[9] Pelletier F., Garant D., Hendry A. P., “Eco-evolutionary dynamics”, Phil. Trans. R. Soc. B, 364:1523 (2009), 1483–1489 | DOI
[10] Yeaman S., Otto S. P., “Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift”, Evolution, 65:7 (2011), 2123–2129 | DOI
[11] Bertram J., Masel J., “Different mechanisms drive the maintenance of polymorphism at loci subject to strong versus weak fluctuating selection”, Evolution, 73:5 (2019), 883–896 | DOI
[12] Neverova G. P., Zhdanova O. L., Frisman E. Y., “Effects of natural selection by fertility on the evolution of the dynamic modes of population number: bistability and multistability”, Nonlinear Dyn., 101:1 (2020), 687–709 | DOI
[13] Zhdanova O. L., Frisman E. Y., “Genetic polymorphism under cyclical selection in long-lived species: The complex effect of age structure and maternal selection”, Journal of Theoretical Biology, 512 (2021), 110564 | DOI
[14] Telschow A., Hammerstein P., Werren J. H., “The effect of Wolbachia on genetic divergence between populations: Models with two-way migration”, The American Naturalist, 160:S4 (2002), S54–S66 | DOI
[15] Fussmann G. F., Loreau M., Abrams P. A., “Eco-evolutionary dynamics of communities and ecosystems”, Functional Ecology, 21:3 (2007), 465–477 | DOI
[16] Tellier A., Brown J. K. M., “Stability of genetic polymorphism in host–parasite interactions”, Proc. R. Soc. B, 274:1611 (2007), 809–817 | DOI
[17] Nagylaki T., Lou Y., “The dynamics of migration–selection models”, Tutorials in Mathematical Biosciences IV, Lecture Notes in Mathematics, 1922, ed. Friedman A., Springer, Berlin, Heidelberg, 2008, 117–170 | DOI
[18] Akerman A., Bürger R., “The consequences of gene flow for local adaptation and differentiation: a two-locus two-deme model”, J. Math. Biol., 68:5 (2014), 1135–1198 | DOI
[19] Pasekov V. P., “K analizu slabogo dvulokusnogo otbora po zhiznesposobnostii kvaziravnovesiya po stsepleniyu”, Doklady Akademii nauk, 484:6 (2019), 781–785 | DOI
[20] Frisman E. Ya., Kulakov M. P., “O geneticheskoi divergentsii v sistemedvukh smezhnykh populyatsii, obitayuschikh na odnorodnom areale”, Izvestiya vuzov. PND, 29:5 (2021), 706–726 | DOI
[21] Frisman E. Ya., Zhdanova O. L., Kulakov M. P., Neverova G. P., Revutskaya O. L., “Matematicheskoe modelirovanie populyatsionnoi dinamiki na osnove rekurrentnykh uravnenii:rezultaty i perspektivy. Ch. II”, Izvestiya RAN. Seriya biologicheskaya, 2021, no. 3, 227–240 | DOI
[22] Altrock P. M., Traulsen A., Reeves R. G., Reed F. A., “Using underdominance to bi-stably transform local populations”, Journal of Theoretical Biology, 267:1 (2010), 62–75 | DOI
[23] Láruson Á. J., Reed F. A., “Stability of underdominant genetic polymorphisms in population networks”, Journal of Theoretical Biology, 390 (2016), 156–163 | DOI
[24] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Kozlov A. D., “Matematicheskaya teoriya dinamicheskogo khaosa i ee prilozheniya: Obzor. Chast 1.Psevdogiperbolicheskie attraktory”, Izvestiya vuzov. PND, 25:2 (2017), 4–36 | DOI